1,217 research outputs found

    DOMINANT ATTRIBUTE AND MULTIPLE SCANNING APPROACHES FOR DISCRETIZATION OF NUMERICAL ATTRIBUTES

    Get PDF
    Rapid development of high throughput technologies and database management systems has made it possible to produce and store large amount of data. However, making sense of big data and discovering knowledge from it is a compounding challenge. Generally, data mining techniques search for information in datasets and express gained knowledge in the form of trends, regularities, patterns or rules. Rules are frequently identified automatically by a technique called rule induction, which is the most important technique in data mining and machine learning and it was developed primarily to handle symbolic data. However, real life data often contain numerical attributes and therefore, in order to fully utilize the power of rule induction techniques, an essential preprocessing step of converting numeric data into symbolic data called discretization is employed in data mining. Here we present two entropy based discretization techniques known as dominant attribute approach and multiple scanning approach, respectively. These approaches were implemented as two explicit algorithms in a JAVA programming language and experiments were conducted by applying each algorithm separately on seventeen well known numerical data sets. The resulting discretized data sets were used for rule induction by LEM2 or Learning from Examples Module 2 algorithm. For each dataset in multiple scanning approach, experiments were repeated with incremental scans until interval counts were stabilized. Preliminary results from this study indicated that multiple scanning approach performed better than dominant attribute approach in terms of producing comparatively smaller and simpler rule sets

    A Charge Conserving Exponential Predictor Corrector FEMPIC Formulation for Relativistic Particle Simulations

    Full text link
    The state of art of charge-conserving electromagnetic finite element particle-in-cell has grown by leaps and bounds in the past few years. These advances have primarily been achieved for leap-frog time stepping schemes for Maxwell solvers, in large part, due to the method strictly following the proper space for representing fields, charges, and measuring currents. Unfortunately, leap-frog based solvers (and their other incarnations) are only conditionally stable. Recent advances have made Electromagnetic Finite Element Particle-in-Cell (EM-FEMPIC) methods built around unconditionally stable time stepping schemes were shown to conserve charge. Together with the use of a quasi-Helmholtz decomposition, these methods were both unconditionally stable and satisfied Gauss' Laws to machine precision. However, this architecture was developed for systems with explicit particle integrators where fields and velocities were off by a time step. While completely self-consistent methods exist in the literature, they follow the classic rubric: collect a system of first order differential equations (Maxwell and Newton equations) and use an integrator to solve the combined system. These methods suffer from the same side-effect as earlier--they are conditionally stable. Here we propose a different approach; we pair an unconditionally stable Maxwell solver to an exponential predictor-corrector method for Newton's equations. As we will show via numerical experiments, the proposed method conserves energy within a PIC scheme, has an unconditionally stable EM solve, solves Newton's equations to much higher accuracy than a traditional Boris solver and conserves charge to machine precision. We further demonstrate benefits compared to other polynomial methods to solve Newton's equations, like the well known Boris push.Comment: 12 pages, 15 figure

    Analytic preconditioners for decoupled potential integral equations for wideband analysis of scattering from PEC objects

    Full text link
    Many integral equations used to analyze scattering, such as the standard combined field integral equation (CFIE), are not well-conditioned for a wide range of frequencies and multi-scale geometries. There has been significant effort to alleviate this problem. A more recent one is using a set of decoupled potential integral equations (DPIE). These equations have been shown to be robust at low frequencies and immune to topology breakdown. But they mimic the behavior of CFIE at high frequencies. This paper addresses this deficiency. We do so by deriving new Calder\'{o}n-type identities through the Vector Potential Integral Equation (VPIE) and Scalar Potential Integral Equation (SPIE), and constructing novel analytic preconditioners for the vector potential integral equation (VPIE) and scalar potential integral equation (SPIE) constrained to perfect electric conductors (PEC). These new formulations are wide-band well-conditioned and converge rapidly for multi-scale geometries. This is demonstrated though a number of examples that use analytic and piecewise basis sets

    Bounds on second generation scalar leptoquarks from the anomalous magnetic moment of the muon

    Get PDF
    We calculate the contribution of second generation scalar leptoquarks to the anomalous magnetic moment of the muon (AMMM). In the near future, E-821 at Brookhaven will reduce the experimental error on this parameter to Δaμexp<4×10−10\Delta a_\mu^{\rm exp}<4\times 10^{-10}, an improvement of 20 over its current value. With this new experimental limit we obtain a lower mass limit of mΦL>186m_{\Phi_L}>186\ GeV for the second generation scalar leptoquark, when its Yukawa-like coupling λΦL\lambda_{\Phi_L}\ to quarks and leptons is taken to be of the order of the electroweak coupling g2g_2.Comment: 5 pages, plain tex, 1 figure (not included available under request

    The Neutrino Magnetic Moment Induced by Leptoquarks

    Get PDF
    Allowing leptoquarks to interact with both right-handed and left-handed neutrinos (i.e., ``non-chiral'' leptoquarks), we show that a non-zero neutrino magnetic moment can arise naturally. Although the mass of the non-chiral vector leptoquark that couples to the first generation fermions is constrained severely by universality of the π+\pi^+ leptonic decays and is found to be greater than 50 TeV, the masses of the second and third generation non-chiral vector leptoquarks may evade such constraint and may in general be in the range of 1∼1001\sim 100 TeV. With reasonable input mass and coupling values, we find that the neutrino magnetic moment due to the second generation leptoquarks is of the order of 10−12∼10−16μB10^{-12}\sim 10^{-16} \mu_{\rm B} while that caused by the third generation leptoquarks, being enhanced significantly by the large top quark mass, is in the range of 10−10∼10−14μB10^{-10}\sim 10^{-14} \mu_{\rm B}.Comment: 11 pages, 3 eps figures, uses revte

    Caring for the collective: biopower and agential subjectification in wildlife conservation

    Get PDF
    types: ArticleCopyright © 2014 PionPost Print. Srinivasan, K. 2014. The definitive, peer-reviewed and edited version of this article is published in Environment and Planning D: Society and Space, Vol. 32, Issue 3, pp. 501 – 517 DOI:10.1068/d13101pThis paper explores turtle conservation in Odisha, India, to map the complicated ways in which animal well-being is pursued in the contemporary world. Using insights from Foucault’s work on biopolitics, it offers an account of conservation as population politics, questioning the entanglement of harm and care that infuses this space of more-than-human social change. In doing this, the paper elaborates the concept of agential subjectification in order to track the mechanisms that underlie the asymmetric circulation of biopower in human–animal interactions and to develop Foucauldian scholarship for the examination of present-day manifestations of the ‘will to improve’.RGS‑IBGCulture and Animals Foundatio

    Etiology of Burst Suppression EEG Patterns

    Get PDF
    Burst-suppression electroencephalography (EEG) patterns of electrical activity, characterized by intermittent high-power broad-spectrum oscillations alternating with isoelectricity, have long been observed in the human brain during general anesthesia, hypothermia, coma and early infantile encephalopathy. Recently, commonalities between conditions associated with burst-suppression patterns have led to new insights into the origin of burst-suppression EEG patterns, their effects on the brain, and their use as a therapeutic tool for protection against deleterious neural states. These insights have been further supported by advances in mechanistic modeling of burst suppression. In this Perspective, we review the origins of burst-suppression patterns and use recent insights to weigh evidence in the controversy regarding the extent to which burst-suppression patterns observed during profound anesthetic-induced brain inactivation are associated with adverse clinical outcomes. Whether the clinical intent is to avoid or maintain the brain in a state producing burst-suppression patterns, monitoring and controlling neural activity presents a technical challenge. We discuss recent advances that enable monitoring and control of burst suppression

    Trapping dust particles in the outer regions of protoplanetary disks

    Get PDF
    In order to explain grain growth to mm sized particles and their retention in outer regions of protoplanetary disks, as it is observed at sub-mm and mm wavelengths, we investigate if strong inhomogeneities in the gas density profiles can slow down excessive radial drift and can help dust particles to grow. We use coagulation/fragmentation and disk-structure models, to simulate the evolution of dust in a bumpy surface density profile which we mimic with a sinusoidal disturbance. For different values of the amplitude and length scale of the bumps, we investigate the ability of this model to produce and retain large particles on million years time scales. In addition, we introduced a comparison between the pressure inhomogeneities considered in this work and the pressure profiles that come from magnetorotational instability. Using the Common Astronomy Software Applications ALMA simulator, we study if there are observational signatures of these pressure inhomogeneities that can be seen with ALMA. We present the favorable conditions to trap dust particles and the corresponding calculations predicting the spectral slope in the mm-wavelength range, to compare with current observations. Finally we present simulated images using different antenna configurations of ALMA at different frequencies, to show that the ring structures will be detectable at the distances of the Taurus Auriga or Ophiucus star forming regions.Comment: Pages 15, Figures 14. Accepted for publication in Astronomy and Astrophysic

    Human amniotic fluid glycoproteins expressing sialyl Lewis carbohydrate antigens stimulate progesterone production in human trophoblasts in vitro

    Get PDF
    Background: Progesterone is thought to mediate immune modulator effects by regulating uterine responsiveness. The aim of the study was to clarify the effect of transferrin and glycodelin A (former name PP14) as sialyl Lewis X-expressing glycoproteins on the release of progesterone by trophoblast cells in vitro. Methods: Cytotrophoblast cells were prepared from human term placentas by standard dispersion of villous tissue followed by a Percoll gradient centrifugation step. Trophoblasts were incubated with varying concentrations (50-300 mug/ml) of human amniotic fluid- and serum-transferrin as well as with glycodelin A. Culture supernatants were assayed for progesterone, human chorionic gonadotropin (hCG) and cortisol by enzyme immunometric methods. Results: The release of progesterone is increased in amniotic fluid transferrin- and glycodelin A-treated trophoblast cell cultures compared to untreated trophoblast cells. There is no relation between transferrin and the hCG or cortisol production of trophoblast cells. Conclusion: The results suggest that sialyl Lewis carbohydrate antigen-expressing amniotic fluid glycoproteins modulate the endocrine function of trophoblasts in culture by upregulating progesterone production. Copyright (C) 2004 S. Karger AG, Basel
    • …
    corecore