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ABSTRACT 

 

Rapid development of high throughput technologies and database management systems has 

made it possible to produce and store large amount of data. However, making sense of big data 

and discovering knowledge from it is a compounding challenge. Generally, data mining 

techniques search for information in datasets and express gained knowledge in the form of 

trends, regularities, patterns or rules. Rules are frequently identified automatically by a technique 

called rule induction, which is the most important technique in data mining and machine learning 

and it was developed primarily to handle symbolic data. However, real life data often contain 

numerical attributes and therefore, in order to fully utilize the power of rule induction techniques, 

an essential preprocessing step of converting numeric data into symbolic data called 

discretization is employed in data mining. 

Here we present two entropy based discretization techniques known as dominant attribute 

approach and multiple scanning approach, respectively. These approaches were implemented as 

two explicit algorithms in a JAVA programming language and experiments were conducted by 

applying each algorithm separately on seventeen well known numerical data sets. The resulting 

discretized data sets were used for rule induction by LEM2 or Learning from Examples Module 2 

algorithm. For each dataset in multiple scanning approach, experiments were repeated with 

incremental scans until interval counts were stabilized. Preliminary results from this study 

indicated that multiple scanning approach performed better than dominant attribute approach in 

terms of producing comparatively smaller and simpler rule sets.  
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CHAPTER 1. INTRODUCTION 

 

Machine learning, data mining and expert systems are interrelated subfields of artificial 

intelligence. One of the primary objectives in artificial intelligence is to make the intelligent 

agent learn rules from data automatically [1]. Whereas machine learning equips machine the 

ability to learn by recognizing patterns present in training data and superimpose inferences later 

on unseen data [2], data mining is defined as extraction of hidden, previously unknown, and 

potentially useful high-level information from low-level data [3]. Expert systems are used to 

implement specific domains of expertise where knowledge is represented in the form of rules and 

reasoned in a given scenario by testing their applicability by induction or deduction [4]. These 

special kind of computer programs have a wide scope in commercial, industrial and scientific 

applications. 

Real life data exhibit varied structure and there exist numerous data mining techniques, however, 

no single technique can be considered the best that would be applicable on all scenarios. Often 

raw data needs to be cleansed and transformed to make it suitable for data mining and knowledge 

discovery. 

Many real life applications involve data that are in numeric format, however, most of the 

inductive learning algorithms, including the one used in this thesis, require data to be in symbolic 

format. In order to use such rule induction algorithms, numeric data must be converted into a 

symbolic format and the process of this conversion is known as discretization. 

Since entropy based methods are regarded as superior among several existing discretization 

methods, we present here two improved entropy based discretization methods viz. dominant 

attribute approach and multiple scanning approach [5, 6]. Dominant attribute approach is a 
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purely recursive algorithm, where after each cycle, data set is split into subsets based on the 

dominant attribute only and recursion continues until a stopping criterion is satisfied. On the 

other hand, in multiple scanning approach, all attributes are simultaneously scanned for a fixed 

number of times and if the stopping criterion is not yet satisfied, dominant attribute algorithm is 

invoked to complete discretization. In both approaches, continuous attributes are initially 

converted into discrete intervals and later some of the neighboring intervals are merged together. 

The merging algorithm preserves consistency by implementing merge process in two steps: (a) 

Safe merging – neighboring intervals are merged if all instances of them are labeled by the same 

decision value; and (b) Proper merging – neighboring intervals are merged only if the result of 

merging do not reduce level of consistency. Seventeen well known data sets, frequently used in 

data mining experiments were chosen to test our discretization algorithms.   
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CHAPTER 2. BACKGROUND 

 

Discretization of numerical attributes is one of the basic preprocessing techniques used in data 

mining. Many discretization algorithms have been proposed, however, discretization based on 

entropy is regarded as best. Before embarking upon entropy based discretization, we introduce 

here the basic concepts of data mining, rough set theory, probability theory and information 

theory. 

2.1. Knowledge discovery & data mining 

In statistics, the study of dependence is called regression. The goal is to summarize the observed 

data as simply, usefully and elegantly as possible [7]. Regression analysis aims to construct a 

suitable model by employing mathematical rigor on a small sample. The process is usually slow 

and conclusions, expressed only in terms of statistical errors, lack explanation. On the other 

hand, modern data mining (DM) process is fast, adventurous and explores entire population by 

using powerful algorithms. It provides better explanation of results in terms of rule sets, decision 

trees, graphs, support vectors, etc., while the predictive power of various algorithms is tested in 

terms of confusion matrix on unseen data. Knowledge Discovery in Databases (KDD) is an 

automatic, exploratory analysis and modeling of large data repositories. KDD is the organized 

process of identifying valid, novel, useful, and understandable patterns from large and complex 

data sets. DM is the core of KDD process, providing algorithmic infrastructure of rule induction 

and inference engine to the overall knowledge acquisition framework. KDD is an iterative and 

interactive process summarized in following steps [8]: 

1. Understanding of the application domain: In this preparatory phase, the investigator gathers 

information, understands the problem and defines goals. In the process, data miner makes up 
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understanding of consequences of various choices to be made during data cleansing, 

preprocessing, data mining and post-processing phases. 

2. Selecting and creating a data set: Having understood the problem and set goals for problem 

solving, next step is to collect and organize data for knowledge discovery. The data from 

varied sources is obtained and integrated into a common knowledgebase. 

3. Preprocessing and cleansing: Integration of raw data collected from one or more sources 

may not be straight-forward. Real data is often marred with errors, missing values and 

technician bias. Preprocessing and cleansing phase is the opportunity to normalize, remove or 

mitigate inconsistencies and enhance reliability of data significantly. 

4. Data transformation: After the initial cleansing phase, data may be free from intrinsic flaws 

but it may not be suitable for intake into the favorite data mining algorithm. Transformation 

is the process of converting raw data into a form that is better suited for rule induction in the 

targeted algorithm. Some of the frequently used methods include discretization, dimension 

reduction, transforming dependent variable only, independent variables only or both kind of 

variables simultaneously, etc. 

5. Choosing the appropriate Data Mining task: Data mining may mean a different thing to 

different people. Sometimes simple statistical analysis is sufficient whereas in other 

occasions even a very sophisticated algorithm is not sufficient. Data mining may be broadly 

subdivided into a problem of regression analysis, cluster analysis or classification. 

Depending on project needs, investigator may choose a suitable data mining strategy. 

6. Choosing the Data Mining algorithm: Having the broad strategy, next step is to decide on 

the finer tactics. Many algorithms have been developed to solve the same problem and in 

data mining too, different algorithms can achieve the same goal with different trade-offs. For 
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example, classification problem can be addressed by rule induction, generation of decision 

trees, construction of neural networks, support vector machines, etc. whereas clustering 

problem can be addressed by techniques of nearest-neighbor, K-means, hierarchical 

clustering, etc. Each of the methods have some advantages and disadvantages and depending 

on the availability of resources in terms of time, money and effort, investigator makes a 

conscious choice of a particular method to be pursued. 

7. Employing the Data Mining algorithm: The selected data mining algorithm is implemented 

and various parameters are tuned to suit the datasets under investigation. 

8. Evaluation: Performance of selected algorithms is evaluated on the experimental data sets. 

This is usually done by a process called n-fold cross validation and summarizing outcome in 

the form of confusion matrix. Confusion matrix comprise of 2 × 2 matrix where each slot is 

occupied by the computed value variously known as true positive, false positive, false 

negative and true negative respectively. Greater proportion of true positives and true 

negatives imply worthiness of the algorithm. 

9. Using and maintaining the discovered knowledge: The knowledge becomes active when the 

implemented system is brought outside of the experimental environment and tested on 

practical situations. Sustaining effectiveness in varied conditions determines robustness of 

the implemented methodology. Providing periodic updates and implementing patches are 

important components of any maintenance program. 

 

2.2. Decision table 

Data from which rules are induced are presented in the form of a table, in which cases and 

attributes are represented by rows and columns respectively. An example of such table is 
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presented in Table 1. The last column usually represents a dependent variable called decision 

that contains expert assigned values whereas all other columns are independent variables called 

attributes. The set of all cases is denoted by 𝑈 and the set of all attributes is denoted by 𝐴. 

Decision is denoted by 𝑑, and comprised of concepts. All cases in a particular concept are 

labelled by the same decision value. 

Table 1. Decision table 

 ATTRIBUTES DECISION 

A1 A2 … An d 

C
A

S
E

S
 

 

1 𝑣11 𝑣21 … 𝑣𝑛1 𝑑1 

2 𝑣12 𝑣22 … 𝑣𝑛2 𝑑2 

3 𝑣13 𝑣23 … 𝑣𝑛3 𝑑3 

… … … … … … 

m 𝑣1𝑚 𝑣2𝑚 … 𝑣𝑛𝑚 𝑑𝑚 

 

 

2.3. Rough set theory 

In the seminal work on rough set theory, Z. Pawlak [9] made a clear distinction between rough 

sets and classic sets. In classic set theory, sets were described as precise entities that are bound by 

crisp boundaries and uniquely determined by its elements. However, many concepts in nature are 

vague and since they are often associated with entities in the boundary region, understanding of 

vagueness is critical in decision making. In order to overcome this limitation of classic sets, Z. 

Pawlak introduced the concept of rough sets where imprecision is expressed by a boundary region 

between sets. Crux of the theory prescribes to split universe into lower and upper approximations. 

The lower approximation represents a subset of elements that certainly belong to the concept 

whereas the upper approximation represents a subset, in which some of the elements certainly 
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belong to the concept and others possibly belong to the concept. All other elements certainly do 

not belong to the concept (Figure 1). 

 

Figure 1. Rough sets 

Let 𝑈 be a nonempty set of elements called the universe. For any set 𝐴 of attributes, an 

indiscernibility relation 𝑅(𝐴) is defined for any two cases 𝑥, 𝑦 ∈ 𝑈 by 

(𝑥, 𝑦) ∈ 𝑅(𝐴) if and only if 𝑎(𝑥) = 𝑎(𝑦) for any 𝑎 ∈ 𝐴, 

where 𝑎(𝑥) is the value of the attribute 𝑎 for the case 𝑥. Indiscernibility relation represents 

uncertainty associated with elements in 𝑈. The indiscernibility relation 𝑅 is an equivalence 

relation. An equivalence class, called an elementary set, and determined by any 𝑥 ∈ 𝑈, is 

denoted by [𝑥]𝑅. Let 𝑋 ⊆ 𝑈 and in order to characterize 𝑋 with respect to 𝑅, rough set theory 

introduced the following concepts: 

 Lower approximation of a set 𝑋 with respect to 𝑅(𝐴) is the set of all elements which can be 

for certain classified as 𝑋 with respect to 𝑅 (or certainly in 𝑋) 

𝑅𝑋 =  ⋃{[𝑥]𝑅|[𝑥]𝑅 ⊆ 𝑋}

𝑥∈𝑈

. 
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 Upper approximation of a set 𝑋 with respect to 𝑅(𝐴) is the set of all elements which can be 

possibly classified as in 𝑋 (or possibly in 𝑋 in view of 𝑅(𝐴))  

𝑅𝑋 =  ⋃{[𝑥]𝑅|[𝑥]𝑅 ∩ 𝑋 ≠  ∅}

𝑥∈𝑈

. 

 Boundary region of a set 𝑋 with respect to 𝑅 is the set of all elements, which can be 

classified neither as 𝑋 nor as not-𝑋 with respect to 𝑅 

𝑅𝑁𝑅𝑋 =  𝑅𝑋 − 𝑅𝑋. 

Set 𝑋 is considered rough if the boundary region is nonempty, otherwise crisp. 

 

2.4. Rule induction 

Regularities hidden in the data are usually expressed in the form of rules and rule induction is 

one of the most important techniques of machine learning and data mining [10]. For the decision 

table shown in Table 1, let 𝐴 = {𝑎1, 𝑎2, . . , 𝑎𝑛} be a set of attributes, and let {𝑣1, 𝑣2, . . , 𝑣𝑛} be a 

set of corresponding values, and 𝑑 = {𝑐1, 𝑐2, . . , 𝑐𝑘} a set of decision values. A block of attribute-

value pair, [(𝑎, 𝑣)] is a set of all cases with identical 𝑣 in 𝑎:  

[(𝑎, 𝑣)] = {𝑥|𝑎(𝑥) = 𝑣} 

Similarly, a block of decision values, [𝑐] is a set of all cases with identical 𝑐 in 𝑑:  

[𝑐] = {𝑥|𝑑(𝑥) = 𝑐} 

Patterns in the data are expressed in the form of a rule set.  A single rule is a combination of one 

or more (𝑎𝑖, 𝑣𝑗) pairs and (𝑑𝑐𝑥
) such as: 

(𝑎1, 𝑣1) 𝑎𝑛𝑑 (𝑎2, 𝑣2) 𝑎𝑛𝑑 … 𝑎𝑛𝑑 (𝑎𝑛, 𝑣𝑛) 𝑡ℎ𝑒𝑛 (𝑑𝑐𝑥
) 

or 

(𝑎1, 𝑣1) & (𝑎2, 𝑣2) & … & (𝑎𝑛, 𝑣𝑛)  →  (𝑑𝑐𝑥
) 
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Any attribute-value pair in the left hand side of a rule is called condition part and the right hand 

side is called a decision-value for the rule. If a rule induction algorithm explores set of all 

attribute values, it is considered as global whereas if exploration is confined only to a set of 

certain attribute-value pairs, it is called local.  

1. Global covering: Let 𝐴 = {𝑎1, 𝑎2, . . , 𝑎𝑛} and 𝑑 = {𝑐1, 𝑐2, . . , 𝑐𝑛} be sets of attributes and 

decision values, respectively. The equivalence classes of indiscernibility relation 𝑅(𝐴) are 

called 𝐴-elementary sets and denoted by [𝑥]𝐴. A partition on 𝑈 constructed from all [𝑥]𝐴 will 

be denoted by 𝐴∗. For decision variable, {𝑑}-elementary sets are called concepts, and the 

corresponding partition is denoted as {𝑑}∗. 

The simplest approach to rule induction is based on finding the smallest subset 𝐵 of the set 𝐴 

that is sufficient to be used in a rule set. A partition 𝐵∗ is smaller than or equal to partition 

{𝑑}∗ if and only if for each block 𝑃 of 𝐵∗ there exists a block 𝑃’ of {𝑑}∗ such that 𝑃 ⊆ 𝑃’. The 

relation is expressed as 𝐵∗ ≤ {𝑑}∗, and called attribute dependency inequality. For a 

decision 𝑑 we say that {𝑑} depends on 𝐵 if and only if 𝐵∗ ≤ {𝑑}∗, i.e., for any 𝐵-elementary 

set [𝑥]𝐵, there exists a concept 𝐶 from {𝑑}∗ such that 𝑋 ⊆ 𝐶. A global covering of {𝑑} is a 

subset 𝐵 of 𝐴 such that {𝑑} depends on 𝐵 and 𝐵 is minimal in 𝐴.  

The algorithm to compute a single global covering is implemented as LEM1 (Learning from 

Examples Module, version 1) algorithm and described in [10-13]. The LEM1 algorithm is 

based on calculus on partitions on the entire universe U. 

2. Local covering: LEM2 algorithm (Learning from Examples Module, version 2) [10-13] 

presents another approach to rule induction where search space is limited to attribute-value 

pairs only. Let 𝑇 be a set of attribute-value pairs. The block of 𝑇, denoted by [𝑇], is the 

following set 



10 
 

⋂[𝑡]

𝑡∈𝑇

 

Let 𝐵 be a subset of 𝑑. Set 𝐵 depends on a set 𝑇 of attribute-value pairs 𝑡 = (𝑎, 𝑣) if and only 

if [𝑇] is nonempty and [𝑇] ⊆ 𝐵. Set 𝑇 is a minimal complex of 𝐵 if and only if 𝐵 depends 

on 𝑇 and no proper subset 𝑇’ of 𝑇 exists such that 𝐵 depends on 𝑇’. Let T  be a nonempty 

collection of sets of attribute-value pairs. Then T  is a local covering of B if the following 

conditions are satisfied: 

(1) Each member 𝑇 of T  is a minimal complex of 𝐵, 

(2) 𝑈tϵT  [𝑇]  =  𝐵, and 

(3) T  is minimal, i.e., T  has the smallest possible number of members. 

 

2.5. Probability theory 

Practical data mining often deals with data sets that are noisy, inconsistent or incomplete and 

therefore rules induced from such data sets are associated with certain amount of uncertainty. 

Probability theory is the calculus of uncertainty and it is a key concept in the field of data mining 

and knowledge discovery. Some of the basic terms used in probability theory are briefly 

described below [14]: 

1. Random variable: A random variable is a variable selected at random from a statistical 

population. If a random variable has a finite number of possible values, it is called a 

discrete random variable, for example, number of students in a class, number of eggs in a 

basket, etc. If possible values of a random variable are continuous, it is called a 

continuous random variable, for example, height of students, temperature in℃, etc. 
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2. Probability: The probability of an event 𝐸 is defined as the ratio of number of favorable 

outcomes, 𝑁𝑒 to the total number of possible outcomes 𝑁. 

𝑃(𝐸) =
𝑁𝑒

𝑁
 

3. Conditional probability: For the two chance events 𝐸1 and 𝐸2, not necessarily 

independent, conditional probability of 𝐸1 given 𝐸2 is defined as the ratio of occurrence 

of both events, 𝐸1 and 𝐸2 together to the occurrence of 𝐸2 irrespective of 𝐸1.  

𝑃(𝐸1|𝐸2) =  
𝑃(𝐸1 ∩ 𝐸2)

𝑃(𝐸2)
 

4. Probability distribution: Probability distribution of a discrete random variable is a set of 

probabilities associated with each of its possible values. For instance, consider a random 

variable Color with a domain {green, yellow, yellow, red, blue, red, yellow}. Probability 

associated with each value in Color is computed in Table 2 and the distribution is 

displayed in Figure 2.  

Table 2. Probability distribution 

Random 

variable 

Probability 

green 1/7 = 0.14 

yellow 3/7 = 0.43 

red 2/7 = 0.29 

blue 1/7 = 0.14 

 

 

Figure 2. Probability distribution 
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Similar treatment with continuous random variable is problematic because it is 

impossible to assign small amount of probabilities to all possible values in a continuous 

random variable. To overcome this problem, its range is divided into a number of 

intervals and respective probabilities are computed as the number of cases falling into 

those defined intervals. If we increase the number and decrease the width of intervals, 

resulting probability distribution becomes almost a smooth curve. 

5. Cumulative probability distribution: Cumulative probability of a value is the sum of 

probabilities of all values up to itself in the ordered list and cumulative probability 

distribution is the set of all cumulative probabilities for possible values in the random 

variable. Table 3 shows respective cumulative probabilities for the values in Table 2.  

Table 3. Cumulative probability distribution 

Random 

variable 

Probability Cumulative 

probability 

green 0.14 0.14 

yellow 0.43 0.57 

red 0.29 0.86 

blue 0.14 1.00 

 

Probabilities for continuous random variables are computed as the area under a curve and 

the total area under the curve is equal to 1. 

 

2.6. Information theory and entropy 

Information theory started as a subfield to communication theory and primarily addressed issues 

with data compression and data communication. However, its domain has grown and made 

significant contributions to other fields of study such as statistical physics, computer science, 

statistical inference, probability, etc. [15]. Entropy, relative entropy and mutual information are 

the fundamental quantities of information theory and are defined in terms of probability 
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distributions. These concepts were first formulated and introduced in relation to communication 

theory by C. E. Shannon [16]. They characterize behavior of random variables by quantifying 

amount and rate of information produced by the random processes.  

Let a random process generates 𝑛 possible events with probabilities of 𝑝1, 𝑝2, … , 𝑝𝑛 respectively. 

The entropy of such a variable is defined by: 

𝐻(𝑋) =  − ∑ 𝑝𝑖 . log 𝑝𝑖

𝑛

𝑖=1

 

This quantity measures randomness or uncertainty associated with the variable. For example, the 

quantity vanishes for a completely certain event and measures high for highly uncertain event 

i.e., there are more choices with equally likely events. The quantity plays a central role in 

information theory as it provides measures of information, choice and uncertainty. Entropy of 𝑋, 

denoted by 𝐻(𝑋), has following properties: 

1. 𝐻(𝑋) = 0 if and only if all but one 𝑝𝑖 are zero and the sole non-zero probability is equal to 

unity. Thus entropy vanishes only when the outcome of a particular event is certain. 

Otherwise it has a positive value. 

2. For a given 𝑛, 𝐻(𝑋) is maximum and equal to 𝑙𝑜𝑔 𝑛 when all the 𝑝𝑖 are equal. This is the 

most uncertain situation. 

3. Let 𝑥 and 𝑦 are two random variables with 𝑚 and 𝑛 possible outcomes respectively. Let 𝑝𝑖𝑗 

be the probability of the joint occurrence of 𝑖𝑡ℎ and 𝑗𝑡ℎ instance of 𝑥 and 𝑦 respectively. 

Marginal entropies of two variables are defined by: 

𝐻(𝑥) = − ∑ 𝑝𝑖,𝑗 . log ∑ 𝑝𝑖,𝑗

𝑛

𝑗=1

𝑚,𝑛

𝑖=1,𝑗=1
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𝐻(𝑦) = − ∑ 𝑝𝑖,𝑗 . log ∑ 𝑝𝑖,𝑗

𝑚

𝑖=1

𝑚,𝑛

𝑖=1,𝑗=1

 

It can be easily observed that 𝐻(𝑥, 𝑦) ≤ 𝐻(𝑥) + 𝐻(𝑦). This imply that the uncertainty of a 

joint event is always less than or equal to the sum of the individual uncertainties.  

4. Any change toward equalization of the probabilities 𝑝1, 𝑝2, … , 𝑝𝑛 increases 𝐻(𝑋). 

5. For the random variables 𝑥 and 𝑦, conditional entropy of 𝑦 given 𝑥 is defined as the average 

of the entropy of 𝑦 for each value of 𝑥, weighted according to the probability of getting that 

particular 𝑥: 

𝐻(𝑦|𝑥) = − ∑ 𝑝𝑖,𝑗. log 𝑝𝑗|𝑖

𝑚,𝑛

𝑖=1,𝑗=1

 

Where 𝑝𝑗|𝑖 is the conditional probability of 𝑝𝑗 given 𝑝𝑖. Conditional entropy measures 

average uncertainty of 𝑦 when 𝑥 is known.  
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CHAPTER 3. DISCRETIZATION 

 

Discretization is a family of data transformation techniques in which continuous numerical 

values are transformed into a finite set of discrete intervals. For a numerical attribute 𝐴 with an 

interval [𝑎, 𝑏] as range, discretization of 𝐴 is defined as a partition of the range into 𝑛 intervals: 

{[𝑎0, 𝑎1), [𝑎1, 𝑎2), … , [𝑎𝑛−2, 𝑎𝑛−1), [𝑎𝑛−1, 𝑎𝑛]} 

where 𝑎0 = 𝑎, 𝑎𝑛 = 𝑏, and 𝑎𝑖 < 𝑎𝑖+1 for 𝑖 = 0, 1, … , 𝑛 − 1. The numbers 𝑎1, 𝑎2, … , 𝑎𝑛−1 are 

called cut-points. Discretization methods are called local if attributes are processed one at a time 

and global if all attributes are simultaneously considered towards selection of a best cut-point. A 

comprehensive review of discretization methods can be found in [6, 17-19]. 

 

3.1. Equal width intervals 

This is the simplest kind of discretization technique where entire range is partitioned into a 

number of equal width intervals. According to H. A. Sturges [20], for an attribute 𝐴 with 𝑁 cases 

and range 𝑎𝑁 − 𝑎1, optimal class intervals 𝐶𝐿, can be estimated from the formula: 

𝐶𝐿 =  
𝑎𝑁 − 𝑎1

1 + 3.332 log 𝑁
 

This method can be used for computation of basic summary statistics of frequency distributions, 

however, it does not take into account the class information and it generally fares poor during 

rule induction processes. With equal width interval methods, it is difficult to determine the 

optimal number of intervals and often the optimal count is settled by running the learning 

algorithm iteratively on same data set but with incremental interval count on each iteration. The 

process is cumbersome and the determined number may not be optimal. 
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3.2. Equal frequency intervals 

Another simple approach where interval widths may vary but sample frequency is same in every 

interval and therefore all discretized intervals have equal information content. Again, the desired 

number of intervals must be determined stochastically or supplied by the user. 

 

3.3. Minimal class entropy method 

The method computes class entropy associated with subsets of values partitioned by the selected 

cut-point. Let class 𝐶 has 𝑘 concepts associated with a set 𝑆, then class entropy of 𝑆, 𝐸(𝑆) is 

defined as: 

𝐸(𝑆) =  − ∑
|𝑐𝑖|

|𝑆|
 log2

|𝑐𝑖|

|𝑆|

𝑘

𝑖=1

 

where |𝑆| and |𝐶𝑖| are the cardinalities of 𝑆 and 𝑖𝑡ℎconcept respectively. Negative sign in the 

expression assures that the quantity is always positive, whose lower value implies closer 

association (or better fit) between set and class. To evaluate a cut-point 𝑞 for an attribute 𝐴, 

weighted average of class entropies 𝐸(𝐴, 𝑞; 𝑆) of the partitioned subsets 𝑆1 and 𝑆2 are 

determined as: 

𝐸(𝐴, 𝑞; 𝑆) =  
|𝑆1|

|𝑆|
 𝐸(𝑆1) +  

|𝑆2|

|𝑆|
 𝐸(𝑆2) 

This quantity is called the class information entropy [21]. Binary discretization for an attribute is 

determined by computing 𝐸(𝐴, 𝑞𝑖; 𝑆) for all possible cut-points and selecting the one for which 

the quantity is minimum. The process is recursively applied to the subsets until a stopping 

criteria is satisfied. Minimum description length principle (MDLP) criteria is one of such 
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approaches that accepts cut-point if the result of partition leads to a positive information gain, 

otherwise recursion in the discretization process stops without further partitioning [22]. 

 

3.4. Cluster analysis method 

Cluster analysis is frequently used for unsupervised machine learning where class information is 

not taken into consideration. The main idea is to compute one-to-one distances among all 

samples and partition them accordingly into a number of clusters. Again, deciding on the optimal 

number of clusters is an iterative process that can be determined from a number of different 

approaches. Often the process is more of an art than science and it is often swayed by an expert’s 

predispositions. Cluster analysis based discretization [18] described here uses level of 

consistency as the stopping criterion during cluster formation stage. 𝐴∗ and {𝑑}∗ represent 

partitions on 𝑈 constructed from 𝐴 and 𝑑, respectively. The level of consistency, 𝐿(𝐴) is defined 

as: 

𝐿(𝐴) =  
∑ |𝐴𝑋|𝑋∈{𝑑}∗

|𝑈|
 

A desired value for level of consistency is unity after discretization. Therefore, stopping 

condition of recursion in the binary discretization algorithm is 𝐿(𝐴) = 1. Recursion prevails as 

long as 𝐿(𝐴) < 1. The discretization process consists of two distinct steps, (a) cluster formation 

and (b) post-processing. Each of the steps are briefly described below: 

1. Cluster formation: If there are 𝑚 samples and 𝑛 numeric attributes, all attributes are 

normalized and 𝑚 × 𝑚 distance matrix is constructed. The choice of distance measure affects 

clustering and therefore it should be chosen carefully. In the agglomerative technique of 

clusters analysis, initially every sample is treated as a single cluster and the two closest 
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clusters are fused together. Fused cluster is treated as a single entity and its centroid of is 

used to re-compute distances from remaining clusters. Consistency of clusters is computed 

by a rough set approach and fusion process is repeated until the level of consistency denoted 

by 𝐿𝑐 is preserved to the original state. In rough set theory, data with a set of samples 𝑈 and a 

set of attributes 𝐴 is consistent with respect to the decision 𝑑, if and only if 𝐴∗ ≤ {𝑑}∗, 

where 𝐴∗ and {𝑑}∗ are partitions on 𝑈 constructed from 𝐴 and 𝑑 respectively. 

2. Post processing: Cluster formation often induce excessive intervals, some of which are fused 

together during the post-processing step. Some of the neighboring intervals are merged 

together in such a way that the consistency of resulting clusters is preserved to the original 

state. Let the neighboring intervals are denoted by 𝑖. . 𝑗 and 𝑗. . 𝑘, then merging them together 

results in a new interval 𝑖. . 𝑘. The merging algorithm consists of two steps, safe merging and 

proper merging. (a) Safe merging: Neighboring intervals are merged if all instances of them 

are labeled by the same decision value. (b) Proper merging: Neighboring intervals are 

merged if the result of merging do not reduce level of consistency. 

 

3.5. Entropy based discretization 

Entropy based discretization takes into consideration the information content of both attribute 

and decision variables and therefore it is considered as one of the most successful approach. We 

present here two improved entropy based discretization strategies viz. dominant attribute 

approach and multiple scanning approach [5, 6]. 

3.5.1. Dominant attribute approach 

1. Identify best attribute: Best attribute is the one which has highest information gain. 

Given decision 𝑑, information gain 𝐼(𝑎) associated with an attribute 𝑎 is defined as: 
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𝐼(𝑎) = 𝐻𝑑(𝑈) − 𝐻(𝑑|𝑎) 

where 𝐻𝑑(𝑈) is the entropy of 𝑑 and 𝐻(𝑑|𝑎) is the conditional entropy of 𝑑 given 𝑎. 

2. Identify best cut-point: For the best attribute, sort the values and enumerate all 

possible cut-points. Find out the best cut-point which has lowest class information 

entropy.  

3. Split dataset: The best cut-point splits dataset 𝑆 (initially 𝑆 is equal to 𝑈) into two 

smaller datasets, 𝑆1 and 𝑆2. 

4. Stopping criteria: Compute level of consistency 𝐿(𝐴) of the best cut-point and if 

𝐿(𝐴) < 1, apply steps 1 through 3 recursively to subsets 𝑆1 and 𝑆2 separately. 

If 𝐿(𝐴) = 1, recursion stops and binary discretization for a particular subset is 

complete. 

3.5.2. Multiple scanning approach 

1. Total number of scans: The parameter denoted by 𝑡, must be provided by the user. 

2. Identify best cut-points: Let a set of numerical attributes is denoted by 𝐴. Scan the 

entire dataset and find out best cut-point for every attribute in 𝐴. For each attribute 

separately, sort the values and enumerate all possible cut-points. Find out the best cut-

point which has lowest class information entropy. 

3. Level of consistency: Discretize all attributes in 𝐴 with best cut-points and denote a 

new set of discretized attributes by 𝐴𝐷. Compute level of consistency 𝐿(𝐴𝐷) and 

if 𝐿(𝐴𝐷) < 1, compute partition (𝐴𝐷)∗ on 𝑈. 

4. Split dataset: For ∀𝑥 ∈(𝐴𝐷)∗ , if  𝑥 ≰ {𝑑}∗ extract subset 𝑆 with all elements of 𝑥. If 

number of scans is less than 𝑡, apply recursively steps 1 through 4 for subset 𝑆. 

5. Stopping criteria: The algorithm stops when the number of predefined scans are 
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exhausted and level of consistency is preserved to 100%.  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑎𝑛𝑠 = 𝑡; 𝑎𝑛𝑑 

𝐿(𝐴𝐷) = 1 

If 𝑡 has exhausted but 𝐿(𝐴𝐷) < 1, apply dominant attribute algorithm to the 

remaining subsets. 

 

3.6. Post processing 

Excess intervals produced by dominant attribute approach and multiple scanning approach are 

handled by post processing procedure described earlier for cluster analysis based discretization. 

Briefly again, some of the neighboring intervals are merged together in such way that the number 

of intervals are reduced and at the same time level of consistency is preserved. Let the 

neighboring intervals are denoted by 𝑖. . 𝑗 and 𝑗. . 𝑘, then merging them together results in a new 

interval 𝑖. . 𝑘. The merging algorithm consists of two steps: 

a) Safe merging: Neighboring intervals are merged if all instances of them are labeled by a 

same decision value.  

b) Proper merging: Neighboring intervals are merged if the result of merging do not reduce 

level of consistency.  
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CHAPTER 4. IMPLEMENTATION 

 

4.1. Computer platform 

All experiments were run on a machine located in the Eaton Hall laboratory, EECS department, 

University of Kansas. Machine configuration included 8 GB of RAM with 64 bit processor 

(Intel(R) Xeon(R) CPU E3-1270 V2 @ 3.50GHz) under Fedora (Linux) operating system.  

 

4.2. Programming language 

The algorithms were implemented in Java programming language using Eclipse integrated 

development environment (IDE) Kepler service release 1. Java was originally developed by 

James Gosling, Patrick Naughton, Chris Warth, Ed Frank and Mike Sheridan at Sun 

Microsystems, Inc. in 1991 [23]. The main impetus for the development of Java was to liberate 

the language from platform dependence and although heavily inspired from C++, Java was never 

meant to replace C++ (Figure 3). Java is a platform independent language and therefore once 

written, it can be run anywhere. 

Some of the salient features of Java include: 

1. Simple: Java was designed to be easy to learn and use effectively. Complex operations such 

as handling memory leaks and garbage collection are taken care by automatic memory 

management and thus all the complexities are hidden from the programmer. Since Java 

inherits syntax and object-oriented features of C++, many C++ programmers find it rather 

simple to learn Java. 

2. Platform independent: Both system software and machine architecture have been evolving 

continuously and therefore, one of the challenges for programmers is to maintain their own 
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code for execution on different platforms and at different times. Java allows program to be 

written once and run anywhere/anytime. 

BCPL 

(Martin Richard, 1966) 

↓ 

B 

(Ken Thomson, Dennis Ritchie, 1969) 

↓ 

C 

(Dennis Ritchie, 1969-73) 

↓ 

C++ 

(Bjarne Stroustrup, 1983) 

↓ 

Java 

(James Gosling, 1991) 
 

Figure 3. Evolution of Java 

 

3. Bytecode: Java achieved platform independence by implementing bytecode and Java Virtual 

machine (JVM). The Java compiler processes source code and generate bytecode. Bytecode 

is different from usual executable code and it is highly optimized for JVM. JVM creates a 

layer between native platform and the bytecode. Since the upper layer of JVM is always 

same, a bytecode can be run on a wide variety of platforms.  

4. Secure: Java restricts internet based applets to its own execution environment and therefore 

other system resources are protected from unauthorized access. 

5. Easy to distribute via internet: Java handles TCP/IP protocols and therefore its applications 

can be easily transmitted via internet. 

6. Industry standard: Platform independence give a big advantage to any industry and the 

automatic memory management hides unnecessary technical jargon. 
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4.3. Graphics 

All graphics were generated by using suit of plotting packages implemented in R programming 

languages (R version 3.1.0 (2014-04-10) -- "Spring Dance") [24] with RStudio version 0.98.953 

integrated development environment (IDE). 

 

4.4. Data structures 

A complex problem can be divided into a number of sub-problems and the solution can be 

reached in a different ways. Algorithms must be written to maximize the chances of achieving 

goal and minimize the amount of time and effort involved. The efficiency issue becomes most 

obvious when the size of input data is large. As an example, a poorly written algorithm for 

maximum subsequence sum takes 2.28 seconds for input size of 1000 but it fails to come up with 

solution for larger dataset of size 10,000. On the other hand, same problem can be solved in 

0.0003 seconds with efficient algorithm [25]. Keeping-up with the earlier discussion, data 

mining algorithms are highly complex, exploration intensive and goal oriented. Specific choices 

made in the course of action has profound impact on the quality of results.  

Java provides a convenient facility for using desired data structures [26]. The java.util package 

contains a powerful subsystems called collections which is Java’s standard framework of 

handling group of objects. The framework has highly efficient implementations of various 

fundamental data structures such as arrays, linked lists, trees, hash tables, etc. Some of the data 

structures used in this thesis work and respective running times in big O notation [27] is briefly 

summarized below.  

1. List interface: List is a sequence of elements where duplicates are allowed and ordering is 

not important. Elements in the list are accessed by their position and elements at specific 
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position can be inserted or removed. 

 LinkedList: It provides a bidirectional linked-list data structure. It has two constructors, 

the first builds a head (empty linked list) and the second builds a linked list on it. Because 

every node has to maintain two links, Java’s LinkedList is a very inefficient 

implementation. Average running times for insert, delete and search operations 

are 𝑂(1), 𝑂(1) and 𝑂(𝑛) respectively.  

 ArrayList: In Java, ArrayList supports dynamic arrays that is created with an initial size 

and it can automatically grow or shrink during run time. Average running times for insert, 

delete and search operations are 𝑂(𝑛), 𝑂(𝑛) and 𝑂(1) respectively. 

2. Set interface: A set does not allow duplicate elements. 

 TreeSet: It uses tree data structure where objects are stored in sorted, ascending order. 

Average running times for insert, delete and search operations are 𝑂(𝑙𝑜𝑔 𝑛), 𝑂(𝑙𝑜𝑔 𝑛) 

and 𝑂(𝑙𝑜𝑔 𝑛) respectively. 

 HashSet: It uses hash table for storage. Hash table stores information by using a 

mechanism called hashing. In hashing, the informational content of a key is used to 

determine a unique value, called its hash code. The hash code is then used as the index at 

which the data associated with the key is stored. The advantage of hashing is that it 

allows the execution time of basic operations to remain constant. Average running times 

for insert, delete and search operations are 𝑂(1), 𝑂(1) and 𝑂(1) respectively. 

3. Map interface: A map is an object that stores associations between key/value pairs. The key 

must be unique, but the values may be duplicated. 

 TreeMap: TreeMap implements the map interface by using a tree. A TreeMap provides 

an efficient means of storing key/value pairs in sorted order and allows rapid retrieval. A 
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TreeMap guarantees that its elements will be sorted in ascending key order. Average 

running times for insert, delete and search operations are 𝑂(𝑙𝑜𝑔 𝑛), 𝑂(𝑙𝑜𝑔 𝑛) 

and 𝑂(𝑙𝑜𝑔 𝑛) respectively.  

 HashMap: The HashMap class uses a hash table to implement the Map interface. This 

allows the execution time of basic operations to remain constant. The order in which 

elements are added to a hash map is not necessarily the order in which they are read by an 

iterator. Average running times for insert, delete and search operations are 𝑂(1), 𝑂(1) 

and 𝑂(1) respectively.  

4. Iterator: Often it is necessary to cycle through the elements in a collection. Every collection 

class implements an iterator with similar interface and therefore, elements of any collection 

class can be accessed through the methods defined in the iterator. In other words, iterator 

interface gives a general-purpose, standardized way of accessing the elements within a 

collection. 

5. Loops: In addition to well established data structures, due care was taken while looping 

through procedures. For example, if the requirement was just to iteration through list, while 

loop was preferred over for loop. FOR loop has an overhead of computing list size and 

increment operator. Because nesting has exponential cost on the algorithms, nested loops 

were avoided whenever possible.  

 

4.5. Data sets 

Data sets used to conduct experiments are summarized in Table 4 and most of them are available 

in the Machine Learning Repository, University of California Irvine. Number of cases, attributes 

and classes for each data set along with pointers to source information is included in the table. 
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Table 4. Data sets 

Data set Number of 

Cases Attributes Concepts 

Australian Credit Approval [28] 

(AUSTR)  

690 14 2 

NCBI GEO number: GSE2564 [29]  

(COMMON-COMBINED-LERS) 

68 16280 11 

M-BANK[30] 66 5 2 

Echocardiogram [28] 

(M-ECHO) 

74 7 2 

Glass Identification [28] 

(M-GLASS ) 

214 9 6 

M-GLOBE[28] 33 5 4 

Image Segmentation [28] 

(M-IMAGE) 

210 19 7 

Iris [28] 

(M-IRIS) 

150 4 3 

Wine [28] 

(M-WINE)  

178 13 3 

Abalone [28] 

(N-ABALONE) 

4177 8 28 

Liver Disorders [28] 

(N-BUPA) 

345 6 2 

Ecoli [28] 

(N-ECOLI) 

336 7 8 

Pima Indians Diabetes [28] 

(N-PIMA)  

768 8 2 

Waveform Database Generator [28] 

(N-WAVE-512) 

512 21 3 

PRICE[6] 7 3 5 

TABLE[5] 7 3 5 

TRIP[12] 8 3 2 

 

 

4.6. Instructions for running software 

The software can be run from the directory containing java source code. It is convenient to create 

a project directory and execute program from there. From the project directory, typing make will 

compile, link and execute program and on-screen instructions will guide user through rest of the 
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program.  

1. CD to project directory 

2. Type ‘make’ to execute program (program will then invoke user to enter other particulars) 

a. input file name 

b. number of scans 

c. whether to save list of cutpoints 

d. output file name – discretization 

e. if response of (c) is 'y', provide name for cutpoints file 

f. output file name - safe merging 

g. output file name - proper merging 
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CHAPTER 5. EXPERIMENTS 

 

Algorithms implemented for dominant attribute approach and multiple scanning approach were 

applied separately on all 17 data sets. Stopping criteria for dominant attribute approach was to 

preserve level of consistency equal to 100%. For multiple scanning approach, experiments were 

repeated with incremental scan counts. As the number of scans increases, fluctuations with 

discretized interval counts gradually decreases and when the fluctuation was no longer 

significant, the number of scans was considered optimal. The resulting discretized data sets were 

then used to induce rules using LEM2 algorithms implemented in the LERS data mining system. 

To clarify things, we describe here worked out example of each algorithm by using a data set 

shown in Table 5: 

Table 5 

CASE ATTRIBUTE DECISION 

weight length height Price 

1 0.8 0.3 7.2 very small 

2 0.8 1.1 7.2 Small 

3 0.8 1.1 10.2 Medium 

4 1.2 0.3 10.2 Medium 

5 1.2 2.3 10.2 Medium 

6 2.0 2.3 10.2 High 

7 2.0 2.3 15.2 very high 

 

5.1. Dominant attribute algorithm 

We illustrate this method by using data set shown in Table 5.  

A. Find best attribute. Dominant attribute is the one which results in maximum information 

gain, where information gain is given as: 𝐼(𝑎) = 𝐻𝑑(𝑈) − 𝐻(𝑑|𝑎). In this expression, since 
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entropy of decision do not change, we infer that information gain is maximum for the 

attribute which has minimum conditional entropy. Conditional entropy of the decision d is 

defined as: 

𝐻(𝑑|𝑎) =  − ∑ 𝑝(𝑎𝑗). ∑ 𝑝(𝑑𝑖|𝑎𝑗). log 𝑝(𝑑𝑖|𝑎𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

 

where 𝑎1, 𝑎2, . . , 𝑎𝑚 are all values of 𝑎 and 𝑑1, 𝑑2, . . , 𝑑𝑛 are all concepts in 𝑑. The computed 

values of conditional entropies of respective attributes in Table 5 is: 

H(price|weight) = 0.965 

H(price|length) = 1.25 

H(price|height) = 0.745* 

Minimal conditional entropy is associated with height. 

B. Find best cut-point. Next step is to find the best cut-point for height. To enumerate all 

potential cut-points, we first sort unique values in the attribute and find mid-point between 

the adjacent values. For height, the potential cut-points are 8.7 and 12.7: 

Potential cut-points = 7.2 8.7 10.2 12.7 15.2 

To evaluate a cut-point 𝑞 in a variable 𝑉, weighted average of class entropies 𝐸(𝑉, 𝑞;  𝑆) of 

the partitioned subsets 𝑆1 and 𝑆2 are determined as: 

𝐸(𝑉, 𝑞; 𝑆) =  
|𝑆1|

|𝑆|
 𝐸(𝑆1) +  

|𝑆2|

|𝑆|
 𝐸(𝑆2) 

The computed values of 𝐸(𝐴, 𝑞;  𝑆) for each cut-point is: 

E(height, 8.7, U) = 1.265* 

E(height, 12.7, U) = 1.536 

Since minimal value is associated with the 8.7, we consider it as the best cut-point. 
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C. Level of consistency. The level of consistency, 𝐿(𝐵) is defined as: 

𝐿(𝐵) =  
∑ |𝐵𝑋|𝑋∈{𝑑}∗

|𝑈|
 

Level of consistency for the partitioned data set across cut-point, height
8.7

, 𝐿(𝐵) = 0. 

Since 𝐿(𝐵) < 1, partition Table 5 at cut-point height
8.7

, and repeat steps A, B and C 

recursively with both subsets, Table 6 and Table 7.  

Table 6 

CASE ATTRIBUTE DECISION 

weight length height price 

1 0.8 0.3 7.2 very small 

2 0.8 1.1 7.2 small 

 

Table 7 

CASE ATTRIBUTE DECISION 

weight length height price 

3 0.8 1.1 10.2 medium 

4 1.2 0.3 10.2 medium 

5 1.2 2.3 10.2 medium 

6 2.0 2.3 10.2 high 

7 2.0 2.3 15.2 very high 

 

Consider Table 6.

A. Find best attribute. Computed values of conditional entropies for three attributes: 

H(price|weight) = 1 

H(price|length) = 0* 

H(price|height) = 1 

Minimal conditional entropy is associated with lenght. 

B. Find best cut-point. Only potential cut-point for length is 0.7: 
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Potential cut-points = 0.3 0.7 1.1 

C. Level of consistency. Level of consistency for the partitioned data set across cut-point, 

length
0.7

, 𝐿(𝐵) = 1. Since level of consistency is 100%, stopping criterion has been satisfied.  

Consider Table 7 

A. Find best attribute. Again, we compute conditional entropy for each attribute: 

H(price|weight) = 0.4* 

H(price|length) = 0.95 

H(price|height) = 0.65 

Minimal conditional entropy is associated with weight. 

B. Find best cut-point. For weight, potential cut-points and conditional entropy associated with 

each cut-point is computed as: 

Potential cut-points = 0.8 1.0 1.2 1.6 2.0 

Conditional entropy, 

E(weight, 1.0, U) = 1.2 

E(weight, 1.6, U) = 0.4* 

Since minimal value is associated with the 1.6, we consider it as the best cut-point. 

C. Level of consistency at cut-point, weight
1.6

, 𝐿(𝐵) = 0.6. Since 𝐿(𝐵) < 1, split Table 7 at cut-

point weight
1.6

, and repeat steps A, B and C recursively with the resulting subsets, Table 8 

and Table 9. 

Table 8 

CASE ATTRIBUTE DECISION 

weight length height price 

3 0.8 1.1 10.2 medium 

4 1.2 0.3 10.2 medium 
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5 1.2 2.3 10.2 medium 

 

Table 9 

CASE ATTRIBUTE DECISION 

weight length height price 

6 2.0 2.3 10.2 high 

7 2.0 2.3 15.2 very high 

 

Consider Table 8. Decision value of all cases in Table 8 are identical, which means the data set 

is consistent and therefore we do not need to discretize it any further. 

Consider Table 9

A. Find best attribute. Computed values of conditional entropy for three attributes are: 

H(price|weight) = 1 

H(price|length) = 1 

H(price|height) = 0* 

Minimal conditional entropy is associated with height. 

B. Find best cut-point for height 

Potential cut-points = 10.2 12.7 15.2 

C. Level of consistency at cut-point, height
12.7

, 𝐿(𝐵) = 1. Since level of consistency is 100%, 

we conclude that stopping criterion has been satisfied. 

There are no more attributes to be discretized and the recursion is now complete. The final set of 

cut-points are: 

height → 8.7, 12.7 

weight → 1.6 

length → 0.7 
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And the resulting discretized table is shown in Table 10. However, this table may have excess 

intervals which should be removed before using the table for rule induction.  

Table 10. Discretized table 

CASE ATTRIBUTE DECISION 

weight length height price 

1 0.8..1.6 0.3..0.7 7.2..8.7 very small 

2 0.8..1.6 0.7..2.3 7.2..8.7 small 

3 0.8..1.6 0.7..2.3 8.7..12.7 medium 

4 0.8..1.6 0.3..0.7 8.7..12.7 medium 

5 0.8..1.6 0.7..2.3 8.7..12.7 medium 

6 1.6..2.0 0.7..2.3 8.7..12.7 high 

7 1.6..2.0 0.7..2.3 12.7..15.2 very high 

 

Post processing. Next we will describe the two-stage merging procedure to address the issue of 

excessive intervals. 

A. Safe merging: For any attribute and for any two neighboring intervals 𝑖. . 𝑗 and 𝑗. . 𝑘 of the 

same discretized attribute, if both intervals are labeled by the same decision value, both 

intervals are merged, i.e., replaced by a new interval 𝑖. . 𝑘. 

a. Weight: Neighboring intervals 

0.8..1.6 →  very small 

small 

medium 

1.6..2.0 →  high 

very high 

Since two intervals are differently labeled, they cannot be merged.  

b. Length: Neighboring intervals 
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0.3..0.7 → very small 

medium 

0.7..2.3 → small 

        medium 

        high 

        very high  

Since two intervals are differently labeled, they cannot be merged. 

c. Height: Neighboring intervals 

7.2..8.7  → very small 

         small 

8.7..12.7  → medium 

         high 

12.7..15.2 → very high 

Since all neighboring intervals are differently labeled, they cannot be merged. 

B. Proper merging: For any attribute and for any two neighboring intervals 𝑖. . 𝑗 and 𝑗. . 𝑘 of the 

same discretized attribute, if a result 𝑖. . 𝑘 of merging does not reduce the level of 

consistency 𝐿(𝐴𝐷), where 𝐴𝐷 is the current set of discretized attributes, both intervals are 

merged (replaced by a new interval i..k). 

A partition on 𝑈 constructed from all 𝐴-elementary sets of 𝐼𝑁𝐷(𝐴) is denoted by 𝐴∗. For 

decision variable, {𝑑}-elementary sets are called concepts, and denoted as {𝑑}∗. For the 

discretized table, Table 10: 

{𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}} 

{𝐴}∗ = {{1}, {2}, {3, 5}, {4}, {6}, {7}} 
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Therefore, level of consistency, 

𝐿(𝐴) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7
 

=
|{1}| + |{2}| + |{3,4}, {5}| + |{6}| + |{7}|

7
 

=
1 + 1 + 3 + 1 + 1

7
 

= 1 

a. Weight: After merging 0.8..1.6 and 1.6..2.0 

{𝐴}∗ = {{1}, {2}, {3, 5, 6}, {4}, {7}} 

And new level of consistency, 

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7
 

=
|{1}| + |{2}| + |{4}| + ∅ + |{7}|

7
 

=
1 + 1 + 1 + 0 + 1

7
 

= 0.57 

Merging intervals lead to reduction in level of consistency. Therefore, they cannot be 

merged together. 

b. Length: After merging 0.3..0.7 and 0.7..2.3 

{𝐴}∗ = {{1, 2}, {3, 4, 5}, {6}, {7}} 

And new level of consistency, 

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7
 

=
∅ + ∅ + |{3,4,5}| + |{6}| + |{7}|

7
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=
3 + 1 + 1

7
 

= 0.71 

Merging intervals lead to reduction in level of consistency. Thus, they also cannot be 

merged together. 

c. Height: Height has two cut-points and therefore there are two potential merges for the 

attribute. First we consider merging neighboring intervals 7.2..8.7 and 8.7..12.7 and then 

intervals 8.7..12.7 and 12.7..15.2.  

 After merging 7.2..8.7 and 8.7..12.7, 

{𝐴}∗ = {{1, 4}, {2, 3, 5}, {6}, {7}} 

New level of consistency, 

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7
 

=
∅ + ∅ + ∅ + |{6}| + |{7}|

7
 

=
0 + 0 + 0 + 1 + 1

7
 

= 0.29 

Merging intervals lead to reduction in level of consistency. Thus, they cannot be 

merged together. 

 After merging 8.7..12.7 and 12.7..15.2 

{𝐴}∗ = {{1}, {2}, {3, 5}, {4}, {6, 7}} 

Therefore, new level of consistency, 

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7
 



37 
 

=
|{1}| + |{2}| + |{3,5}, {4}| + ∅ + ∅

7
 

=
1 + 1 + 3

7
 

= 0.71 

Merging intervals lead to reduction in level of consistency. Thus, they cannot be 

merged either. 

Since none of the neighboring intervals could be merged by interval merging, final discretized 

data set remains same as Table 10. 

 

5.2. Multiple scanning algorithm 

We again consider Table 5 to illustrate a worked out example of multiple scanning algorithm. 

Scan t = 1 

A. Find best cut point for each attribute 

To evaluate a cut-point q in a variable 𝑉, weighted average of class entropies 𝐸(𝑉, 𝑞;  𝑆) of 

the partitioned subsets 𝑆1 and 𝑆2 are determined as: 

𝐸(𝑉, 𝑞; 𝑆) =  
|𝑆1|

|𝑆|
 𝐸(𝑆1) +  

|𝑆2|

|𝑆|
 𝐸(𝑆2) 

For each attribute separately, we first sort their unique values and then consider mid-points 

between adjacent values as potential cut-points. For each potential cut-point, we compute 

weighted average of class entropy and mark the best cut-point with an asterisk. 

Weight: Potential cut-points = 0.8 →1← 1.2 →1.6← 2.0 

 Conditional entropy, 

  𝐸(𝑤𝑒𝑖𝑔ℎ𝑡, 1;  𝑈) = 1.536413 
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  𝐸(𝑤𝑒𝑖𝑔ℎ𝑡, 1.6, 𝑈) = 0.9332607∗ 

Length: Potential cut-points = 0.3 →0.7← 1.1 →1.7← 2.3 

 Conditional entropy, 

  𝐸(𝑙𝑒𝑛𝑔𝑡ℎ, 0.7, 𝑈) = 9.895355 

  𝐸(𝑙𝑒𝑛𝑔𝑡ℎ, 1.7, 𝑈) = 1.536413∗ 

Height: Potential cut-points = 7.2 →8.7← 10.2 →12.7← 15.2 

 Conditional entropy, 

  𝐸(ℎ𝑒𝑖𝑔ℎ𝑡, 8.7, 𝑈) = 1.264965∗ 

  𝐸(ℎ𝑒𝑖𝑔ℎ𝑡, 12.7, 𝑈) = 1.536413 

Set of best cut-points: 

 weight → 1.6 

 length → 1.7 

 height → 8.7 

Discretized table 

Table 11 

CASE ATTRIBUTE DECISION 

weight length height price 

1 0.8..1.6 0.3..1.7 7.2..8.7 very small 

2 0.8..1.6 0.3..1.7 7.2..8.7 small 

3 0.8..1.6 0.3..1.7 8.7..15.2 medium 

4 0.8..1.6 0.3..1.7 8.7..15.2 medium 

5 0.8..1.6 1.7..2.3 8.7..15.2 medium 

6 1.6..2.0 1.7..2.3 8.7..15.2 high 

7 1.6..2.0 1.7..2.3 8.7..15.2 very high 

 

 



39 
 

For the discretized Table 11: 

 {𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}} 

 {𝐴𝐷}∗ = {{1, 2}, {3, 4}, {5}, {6, 7}} 

B. Level of consistency, L(A) is defined as: 

𝐿(𝐴) =  
∑ |𝐴𝑋|𝑋∈{𝑑}∗

|𝑈|
 

Level of consistency is computed as: 

𝐿(𝐴𝐷) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7
 

=
∅ + ∅ + |{3,4}, {5}| + ∅ + ∅

7
 

=
0 + 0 + 3 + 0 + 0

7
 

= 0.43 

Since 𝐿(𝐴𝐷) < 1 and as we can see subsets {1, 2} and {6, 7} in Table 11 are inconsistent, we 

rescan entire table to distinguish inconsistent subsets shown in Table 12 and Table 13. 

Table 12 

CASE ATTRIBUTE DECISION 

weight length height price 

1 0.8 0.3 7.2 very small 

2 0.8 1.1 7.2 small 

 

Table 13 

CASE ATTRIBUTE DECISION 

weight length height price 

6 2.0 2.3 10.2 High 

7 2.0 2.3 15.2 very high 
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Scan t = 2 

A. Find best cut point for each attribute in Table 12 

Weight: Potential cut-points = none 

Length: Potential cut-points = 0.3 →0.7← 1.1. There is only one possible cut-point. 

Height: Potential cut-points = none 

Updated set of best cut-points: 

 weight → 1.6 

 length → 1.7, 0.7 

 height → 8.7 

Discretized table 

Table 14. Discretized table 

CASE ATTRIBUTE DECISION 

weight length height price 

1 0.8..1.6 0.3..0.7 7.2..8.7 very small 

2 0.8..1.6 0.7..1.1 7.2..8.7 small 

3 0.8..1.6 0.7..1.1 8.7..15.2 medium 

4 0.8..1.6 0.3..0.7 8.7..15.2 medium 

5 0.8..1.6 1.7..2.3 8.7..15.2 medium 

6 1.6..2.0 1.7..2.3 8.7..15.2 high 

7 1.6..2.0 1.7..2.3 8.7..15.2 very high 

 

For the discretized Table 14: 

 {𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}} 

 {𝐴𝐷}∗ = {{1}, {2}, {3}, {4}, {5}, {6, 7}} 

B. Level of consistency. 𝐿(𝐴𝐷) for Table 14 is computed as: 

𝐿(𝐴𝐷) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7
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=
|{1}| + |{2}| + |{3}, {4}, {5}| + ∅ + ∅

7
 

=
1 + 1 + 3 + 0 + 0

7
 

= 0.714 

Since 𝐿(𝐴𝐷) < 1, rescan entire table to distinguish remaining inconsistent subsets, {6, 7} 

Scan t = 3 

A. Find best cut point for each attribute in Table 13 

Weight: Potential cut-points = none 

Length: Potential cut-points = none 

Height: Potential cut-points = 10.2 →12.7← 15.2. There is only one possible cut-point. 

Updated set of best cut-points 

 weight → 1.6 

 length → 1.7, 0.7 

 height → 8.7, 12.7 

Discretized table 

Table 15. Discretization table 

CASE ATTRIBUTE DECISION 

weight length height price 

1 0.8..1.6 0.3..0.7 7.2..8.7 very small 

2 0.8..1.6 0.7..1.7 7.2..8.7 small 

3 0.8..1.6 0.7..1.7 8.7..12.7 medium 

4 0.8..1.6 0.3..0.7 8.7..12.7 medium 

5 0.8..1.6 1.7..2.3 8.7..12.7 medium 

6 1.6..2.0 1.7..2.3 8.7..12.7 high 

7 1.6..2.0 1.7..2.3 12.7..15.2 very high 
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For the discretized Table 15: 

 {𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}} 

 {𝐴𝐷}∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}} 

B. Level of consistency, 𝑳(𝑨𝑫) is defined as: 

𝐿(𝐴𝐷) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7
 

=
|{1}| + |{2}| + |{3}, {4}, {5}| + |{6}| + |{7}|

7
 

=
1 + 1 + 3 + 1 + 1

7
 

= 1 

Since 𝐿(𝐴𝐷) = 1, we are done. 

 

Post processing 

A. Safe merging: For any attribute and for any two neighboring intervals 𝑖. . 𝑗 and 𝑗. . 𝑘 of the 

same discretized attribute, if both intervals are labeled by the same decision value, both 

intervals are merged, i.e., replaced by a new interval 𝑖. . 𝑘. 

a. Weight: Neighboring intervals 

  0.8..1.6 →  very small 

      small 

      medium 

  1.6..2.0 →  high 

      very high 

 Two intervals are differently labeled. Thus, they cannot be merged. 
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b. Length: Neighboring intervals 

  0.3..0.7 →  very small 

      medium 

  0.7..1.7 →  small 

      medium 

  1.7..2.3 →  medium 

      high 

      very high 

 All intervals are differently labeled. Thus, they cannot be merged. 

c. Height: Neighboring intervals 

  7.2..8.7  →  very small 

       small 

  8.7..12.7  → medium 

       high 

  12.7..15.2 →  very high 

 All neighboring intervals are differently labeled. Thus, they cannot be merged. 

B. Proper merging: For any attribute and for any two neighboring intervals 𝑖. . 𝑗 and 𝑗. . 𝑘 of the 

same discretized attribute, if a result 𝑖. . 𝑘 of merging does not reduce the level of 

consistency 𝐿(𝐴𝐷), where 𝐴𝐷 is the current set of discretized attributes, both intervals are 

merged (replaced by a new interval 𝑖. . 𝑘). 

For the discretized Table 15: 

{𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}} 

{𝐴}∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}} 
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Therefore, level of consistency, 

𝐿(𝐴) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7
 

=
|{1}| + |{2}| + |{3}, {4}, {5}| + |{6}| + |{7}|

7
 

=
1 + 1 + 3 + 1 + 1

7
 

= 1 

a. Weight: After merging 0.8..1.6 and 1.6..2.0 

{𝐴}∗ = {{1}, {2}, {3}, {4}, {5, 6}, {7}} 

And level of consistency, 

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7
 

=
|{1}| + |{2}| + |{3}, {4}| + ∅ + |{7}|

7
 

=
1 + 1 + 2 + 0 + 1

7
 

= 0.714 

Merging intervals lead to reduction in level of consistency. Thus, they cannot be merged. 

b. Length: After merging 0.3..0.7 and 0.7..1.7 

{𝐴}∗ = {{1, 2}, {3, 4}, {5}, {6}, {7}} 

Therefore, new level of consistency, 

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7
 

=
∅ + ∅ + |{3,4}, {5}| + |{6}| + |{7}|

7
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=
3 + 1 + 1

7
 

= 0.714 

Merging intervals lead to reduction in level of consistency. Thus, they cannot be merged. 

After merging 0.7..1.7 and 1.7..2.3 

{𝐴}∗ = {{1}, {2}, {3, 5}, {4}, {6}, {7}} 

Level of consistency, 

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7
 

=
|{1}| + |{2}| + |{3, 5}, {4}| + |{6}| + |{7}|

7
 

=
1 + 1 + 3 + 1 + 1

7
 

= 1 

Merging of intervals did not lead to reduction in level of consistency. Thus, 0.7..1.7 and 

1.7..2.3 can be merged together as 0.7..2.3. Discretization is updated in Table 16. 

Table 16 

CASE ATTRIBUTE DECISION 

weight length height price 

1 0.8..1.6 0.3..0.7 7.2..8.7 very small 

2 0.8..1.6 0.7..2.3 7.2..8.7 small 

3 0.8..1.6 0.7..2.3 8.7..12.7 medium 

4 0.8..1.6 0.3..0.7 8.7..12.7 medium 

5 0.8..1.6 0.7..2.3 8.7..12.7 medium 

6 1.6..2.0 0.7..2.3 8.7..12.7 high 

7 1.6..2.0 0.7..2.3 12.7..15.2 very high 
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c. Height: 

After merging 7.2..8.7 and 8.7..12.7 

{𝐴}∗ = {{1, 4}, {2, 3, 5}, {6}, {7}} 

Therefore, new level of consistency, 

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7
 

=
∅ + ∅ + ∅ + |{6}| + |{7}|

7
 

=
0 + 0 + 0 + 1 + 1

7
 

= 0.29 

Merging intervals lead to reduction in level of consistency. Thus, they cannot be merged. 

After merging 8.7..12.7 and 12.7..15.2 

{𝐴}∗  =  {{1}, {2}, {3, 5}, {4}, {6, 7}} 

Therefore, new level of consistency, 

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7
 

=
|{1}| + |{2}| + |{3,5}, {4}| + ∅ + ∅

7
 

=
1 + 1 + 3

7
 

= 0.714 

Merging intervals lead to reduction in level of consistency. Thus, they cannot be merged. 
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CHAPTER 6. RESULTS AND DISCUSSION 

 

6.1. Discretization results 

Summary of discretization by dominant attribute and multiple scanning approach is shown in 

Table 17 - Table 33. Dominant attribute approach is shown with scan count, t = 0 whereas all 

other experiments are conducted by using multiple scanning approach with respective scan 

counts as shown. In general, multiple scanning approach is more conservative than dominant 

attribute approach which is apparent from consistently fewer number of intervals produced by 

the multiple scanning approach. Further, results indicate that rule sets produced by multiple 

scanning approach are more compact i.e., total number of rules and conditions produced is lower 

and the proportion of conditions per rule is higher. After few scans, variations with respect to 

number of intervals stabilized and this stabilization was more prominent post-processing step of 

interval merging was completed. For example, data sets m-bank, m-echo, m-globe, m-image, m-

iris, m-wine, price, table and trip had no variation from scan numbers 1, 6, 5, 7, 6, 1, 1, 1 and 1 

respectively (Table 52). 

Table 17. Summary of discretization for austr 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 162 11.57 48 3.43 

1 54 3.86 36 2.57 

2 60 4.29 35 2.5 

3 65 4.64 34 2.43 

4 69 4.93 35 2.5 

5 74 5.29 35 2.5 

6 79 5.64 35 2.5 

7 83 5.93 35 2.5 

8 86 6.14 37 2.64 

9 90 6.43 37 2.64 

10 97 6.93 36 2.57 
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Table 18.  Summary of discretization for common_combined_lers 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 16326 1 16306 1 

1 32523 2 16293 1 

 
Table 19. Summary of discretization for m-bank 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 14 2.8 14 2.8 

1 15 3 8 1.6 

2 15 3 8 1.6 

3 15 3 8 1.6 

4 15 3 8 1.6 

5 15 3 8 1.6 

6 15 3 8 1.6 

7 15 3 8 1.6 

8 15 3 8 1.6 

9 15 3 8 1.6 

10 15 3 8 1.6 

 
Table 20. Summary of discretization for m-echo 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 32 4.57 21 3 

1 26 3.71 17 2.43 

2 31 4.43 19 2.71 

3 35 5 20 2.86 

4 39 5.57 20 2.86 

5 42 6 21 3 

6 46 6.57 21 3 

7 46 6.57 21 3 

8 46 6.57 21 3 

9 46 6.57 21 3 

10 46 6.57 21 3 

 
Table 21. Summary of discretization for m-glass 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 100 11.11 44 4.89 

1 54 6 29 3.22 

2 66 7.33 35 3.89 

3 72 8 34 3.78 

4 77 8.56 33 3.67 

5 81 9 32 3.56 

6 79 8.78 32 3.56 

7 89 9.89 32 3.56 

8 107 11.89 32 3.56 

9 112 12.44 32 3.56 

10 117 13 33 3.67 
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Table 22. Summary of discretization for m-globe 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 25 5 19 3.8 

1 30 6 16 3.2 

2 26 5.2 15 3 

3 33 6.6 16 3.2 

4 39 7.8 16 3.2 

5 42 8.4 16 3.2 

6 42 8.4 16 3.2 

7 42 8.4 16 3.2 

8 42 8.4 16 3.2 

9 42 8.4 16 3.2 

10 42 8.4 16 3.2 

 

 

 
Table 23. Summary of discretization for m-image 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 86 4.53 47 2.47 

1 63 3.32 38 2 

2 78 4.11 33 1.74 

3 91 4.79 36 1.89 

4 106 5.58 40 2.11 

5 120 6.32 39 2.05 

6 131 6.89 41 2.16 

7 140 7.37 43 2.26 

8 140 7.37 43 2.26 

9 140 7.37 43 2.26 

10 140 7.37 43 2.26 

 

 

 
Table 24. Summary of discretization for m-iris 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 15 3.75 11 2.75 

1 21 5.25 11 2.75 

2 21 5.25 10 2.5 

3 23 5.75 11 2.75 

4 25 6.25 11 2.75 

5 27 6.75 11 2.75 

6 28 7 11 2.75 

7 28 7 11 2.75 

8 28 7 11 2.75 

9 28 7 11 2.75 

10 28 7 11 2.75 
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Table 25. Summary of discretization for m-wine 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 29 2.23 25 1.92 

1 26 2 21 1.62 

2 26 2 21 1.62 

3 26 2 21 1.62 

4 26 2 21 1.62 

5 26 2 21 1.62 

6 26 2 21 1.62 

7 26 2 21 1.62 

8 26 2 21 1.62 

9 26 2 21 1.62 

10 26 2 21 1.62 

 

 

 
Table 26. Summary of discretization for n-abalone 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 1166 145.75 319 39.88 

1 1130 141.25 320 40 

2 1129 141.13 324 40.5 

3 1144 143 321 40.13 

4 1147 143.38 317 39.63 

5 1169 146.13 316 39.5 

6 1177 147.13 309 38.63 

7 1198 149.75 312 39 

8 1217 152.13 310 38.75 

9 1238 154.75 314 39.25 

10 1252 156.5 318 39.75 

 

 

 
Table 27. Summary of discretization for n-bupa 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 83 13.83 35 5.83 

1 86 14.33 32 5.33 

2 87 14.5 34 5.67 

3 90 15 38 6.33 

4 88 14.67 38 6.33 

5 88 14.67 38 6.33 

6 91 15.17 34 5.67 

7 95 15.83 35 5.83 

8 101 16.83 36 6 

9 106 17.67 38 6.33 

10 107 17.83 36 6 
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Table 28. Summary of discretization for n-eoli 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 65 9.29 34 4.86 

1 58 8.29 34 4.86 

2 64 9.14 33 4.71 

3 72 10.29 32 4.57 

4 78 11.14 34 4.86 

5 80 11.43 34 4.86 

6 85 12.14 34 4.86 

7 90 12.86 35 5 

8 97 13.86 36 5.14 

9 99 14.14 36 5.14 

10 106 15.14 36 5.14 

 

 

 
Table 29. Summary of discretization for n-pima 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 148 18.5 41 5.13 

1 108 13.5 42 5.25 

2 112 14 41 5.13 

3 118 14.75 42 5.25 

4 121 15.13 43 5.38 

5 126 15.75 40 5 

6 129 16.13 43 5.38 

7 132 16.5 43 5.38 

8 143 17.88 44 5.5 

9 148 18.5 44 5.5 

10 154 19.25 45 5.63 

 

 

 
Table 30. Summary of discretization for n-wave-512 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 174 8.29 59 2.81 

1 85 4.05 45 2.14 

2 105 5 43 2.05 

3 124 5.9 43 2.05 

4 142 6.76 43 2.05 

5 161 7.67 43 2.05 

6 177 8.43 45 2.14 

7 197 9.38 46 2.19 

8 212 10.1 48 2.29 

9 231 11 47 2.24 

10 250 11.9 47 2.24 
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Table 31. Summary of discretization for price 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 7 2.33 7 2.33 

1 8 2.67 7 2.33 

2 8 2.67 7 2.33 

3 8 2.67 7 2.33 

4 8 2.67 7 2.33 

5 8 2.67 7 2.33 

6 8 2.67 7 2.33 

7 8 2.67 7 2.33 

8 8 2.67 7 2.33 

9 8 2.67 7 2.33 

10 8 2.67 7 2.33 

 

 

 
Table 32. Summary of discretization for table 

Scans Before interval merging After interval merging 

 # intervals # intervals/attribute # intervals # intervals/attribute 

0 7 2.33 7 2.33 

1 8 2.67 7 2.33 

2 8 2.67 7 2.33 

3 8 2.67 7 2.33 

4 8 2.67 7 2.33 

5 8 2.67 7 2.33 

6 8 2.67 7 2.33 

7 8 2.67 7 2.33 

8 8 2.67 7 2.33 

9 8 2.67 7 2.33 

10 8 2.67 7 2.33 

 

 
Table 33. Summary of discretization for trip 

Scans 

 

Before interval merging After interval merging 

# intervals # intervals/attribute # intervals # intervals/attribute 

0 9 3 8 2.67 

1 10 3.33 8 2.67 

2 10 3.33 8 2.67 

3 10 3.33 8 2.67 

4 10 3.33 8 2.67 

5 10 3.33 8 2.67 

6 10 3.33 8 2.67 

7 10 3.33 8 2.67 

8 10 3.33 8 2.67 

9 10 3.33 8 2.67 

10 10 3.33 8 2.67 
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Table 34 shows percent reduction in interval counts after merging operations. Results indicate 

that, on average, multiple scanning approach produces comparatively excessive intervals which 

is associated with high reduction rate during merging process. Although both discretization 

approaches are global, dominant attribute approach is less global in a sense that it focuses on 

only one attribute (dominant) and selects one cut-point on every iteration for splitting data set. 

On the other hand, multiple scanning approach selects as many cut-points as the number of 

attributes in each iteration and hence a more global approach.  

 

Table 34.Percent reduction in interval counts after preprocessing 

Data % Reduction after interval merging 

Dominant attribute 

approach 

Multiple Scanning 

Approach (Average) 

austr 70.37 51.70 

common_combined_lers 0.12 49.90 

m-bank 0.00 46.67 

m-echo 34.38 48.66 

m-glass 56.00 60.05 

m-globe 24.00 57.09 

m-image 45.35 63.34 

m-iris 26.67 57.10 

m-wine 13.79 19.23 

n-abalone 72.64 73.17 

n-bupa 57.83 61.58 

n-ecoli 47.69 57.30 

n-pima 72. 30 66.60 

n-wave-512 66.09 70.39 

price 0.00 12.50 

table 0.00 12.50 

trip 11.11 20.00 
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6.2. Discretization results of bankruptcy data 

6.2.1. Dominant attribute approach 

The approach tends to confine discriminating features to dominant attributes only. Figure 4 - 

Figure 8 shows that the algorithm has repeatedly found attribute a1 as most informative and 

therefore this attribute was overly discretized into large number of intervals. Overall, there 

were 14 intervals defined for the entire data set but as many as 9 intervals were confined to 

dominant attributes, a1. It took 14 rules to explain all patterns in the data set.  

 

Figure 4. DM: Interval distribution for attribute, a1 
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Figure 5. DM: Interval distribution for attribute, a2 
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Figure 6. DM: Interval distribution for attribute, a3 
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Figure 7. DM: Interval distribution for attribute, a4 
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Figure 8. DM: Interval distribution for attribute, a5 
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6.2.2. Multiple scanning approach (10 scans) 

This approach tends to distribute discriminating features evenly across all attributes and 

explains patterns with comparatively much less number of rules. Results in Figure 9 - Figure 

13 show that the approach has discretized dataset into 8 intervals, 6 of them are 

discriminating and spread across 3 attributes. Entire data set was explained with just 4 rules. 

 

 

Figure 9. MS: Interval distribution for attribute, a1 
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Figure 10. MS: Interval distribution for attribute, a2 
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Figure 11. MS: Interval distribution for attribute, a3 
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Figure 12. MS: Interval distribution for attribute, a4 
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Figure 13. MS: Interval distribution for attribute, a5 
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6.3. LEM2 induced rules 

Table 35 - Table 51 shows the general trend that the rule set derived from data set discretized by 

dominant attribute approach contains more number of rules and conditions as compared to 

multiple scanning approach. 

Table 35. LEM2 induced rules for austr 

Scans Rules Conditions Conditions/rule 

0 174 563 3.2356 

1 99 489 4.9394 

2 116 539 4.6466 

3 127 561 4.4173 

4 123 577 4.6911 

5 124 581 4.6855 

6 121 544 4.4959 

7 127 570 4.4882 

8 126 542 4.3016 

9 125 528 4.224 

10 125 535 4.28 

 

Table 36. LEM2 induced rules for common_combined_lers 

Scans Rules Conditions Conditions/Rule 

0 67 67 1 

1 67 67 1 

 

Table 37. LEM2 induced rules for m-bank 

Scans Rules Conditions Conditions/Rule 

0 10 14 1.4 

1 4 7 1.75 

2 4 7 1.75 

3 4 7 1.75 

4 4 7 1.75 

5 4 7 1.75 

6 4 7 1.75 

7 4 7 1.75 

8 4 7 1.75 

9 4 7 1.75 

10 4 7 1.75 
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Table 38. LEM2 induced rules for m-echo 

Scans Rules Conditions Conditions/rule 

0 31 72 2.3226 

1 24 64 2.6667 

2 23 65 2.8261 

3 29 80 2.7586 

4 28 77 2.75 

5 25 68 2.72 

6 25 68 2.72 

7 25 68 2.72 

8 25 68 2.72 

9 25 68 2.72 

10 25 68 2.72 

 

Table 39. LEM2 induced rules for m-glass 

Scans Rules Conditions Conditions/rule 

0 98 225 2.2959 

1 64 223 3.4844 

2 75 252 3.36 

3 80 271 3.3875 

4 76 264 3.4737 

5 77 271 3.5195 

6 70 238 3.4 

7 69 244 3.5362 

8 81 278 3.4321 

9 80 274 3.425 

10 83 268 3.2289 

 

Table 40. LEM2 induced rules for m-globe 

Scans Rules Conditions Conditions/rule 

0 27 57 2.1111 

1 24 57 2.375 

2 22 56 2.5455 

3 22 53 2.4091 

4 20 46 2.3 

5 20 46 2.3 

6 20 46 2.3 

7 20 46 2.3 

8 20 46 2.3 

9 20 46 2.3 

10 20 46 2.3 
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Table 41. LEM2 induced rules for m-image 

Scans Rules Conditions Conditions/rule 

0 57 64 1.1228 

1 64 87 1.3594 

2 51 59 1.1569 

3 55 71 1.2909 

4 62 77 1.2419 

5 59 67 1.1356 

6 57 65 1.1404 

7 58 64 1.1034 

8 58 64 1.1034 

9 58 64 1.1034 

10 58 64 1.1034 

 

Table 42. LEM2 induced rules for m-iris 

Scans Rules Conditions Conditions/rule 

0 10 23 2.3 

1 11 23 2.0909 

2 10 21 2.1 

3 10 22 2.2 

4 10 22 2.2 

5 10 22 2.2 

6 10 20 2 

7 10 20 2 

8 10 20 2 

9 10 20 2 

10 10 20 2 

 

Table 43. LEM2 induced rules for m-wine 

Scans Rules Conditions Conditions/rule 

0 24 57 2.375 

1 11 37 3.3636 

2 11 37 3.3636 

3 11 37 3.3636 

4 11 37 3.3636 

5 11 37 3.3636 

6 11 37 3.3636 

7 11 37 3.3636 

8 11 37 3.3636 

9 11 37 3.3636 

10 11 37 3.3636 
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Table 44. LEM2 induced rules for n-abalone 

Scans Rules Conditions Conditions/rule 

0 3135 10624 3.3888 

1 3161 10551 3.3379 

2 3184 10607 3.3313 

3 3178 10593 3.3332 

4 3163 10589 3.3478 

5 3146 10527 3.3462 

6 3152 10574 3.3547 

7 3157 10537 3.3377 

8 3147 10522 3.3435 

9 3161 10539 3.3341 

10 3155 10508 3.3306 

 

Table 45. LEM2 induced rules for n-bupa 

Scans Rules Conditions Conditions/rule 

0 154 465 3.0195 

1 11 37 3.3636 

2 150 476 3.1733 

3 159 479 3.0126 

4 145 435 3 

5 154 455 2.9545 

6 143 433 3.028 

7 153 453 2.9608 

8 151 453 3 

9 162 485 2.9938 

10 146 443 3.0342 

 

Table 46. LEM2 induced rules for n-ecoli 

Scans Rules Conditions Conditions/rule 

0 99 266 2.6869 

1 103 284 2.7573 

2 113 322 2.8496 

3 111 319 2.8739 

4 113 320 2.8319 

5 111 308 2.7748 

6 116 316 2.7241 

7 108 299 2.7685 

8 114 329 2.886 

9 113 319 2.823 

10 114 319 2.7982 
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Table 47. LEM2 induced rules for b-pima 

Scans Rules Conditions Conditions/rule 

0 285 958 3.3614 

1 256 952 3.7188 

2 263 933 3.5475 

3 272 988 3.6324 

4 275 993 3.6109 

5 256 930 3.6328 

6 256 904 3.5312 

7 270 965 3.5741 

8 263 939 3.5703 

9 263 939 3.5703 

10 264 932 3.5303 

 

Table 48. LEM2 induced rules for n-wave-512 

Scans Rules Conditions Conditions/rule 

0 182 667 3.6648 

1 104 559 5.375 

2 105 510 4.8571 

3 107 512 4.785 

4 129 549 4.2558 

5 120 525 4.375 

6 118 526 4.4576 

7 179 771 4.3073 

8 172 746 4.3372 

9 169 722 4.2722 

10 171 768 4.4912 

 

Table 49. LEM2 induced rules for price 

Scans Rules Conditions Conditions/rule 

0 5 9 1.8 

1 5 9 1.8 

2 5 9 1.8 

3 5 9 1.8 

4 5 9 1.8 

5 5 9 1.8 

6 5 9 1.8 

7 5 9 1.8 

8 5 9 1.8 

9 5 9 1.8 

10 5 9 1.8 
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Table 50. LEM2 induced rules for table 

Scans Rules Conditions Conditions/rule 

0 5 9 1.8 

1 5 9 1.8 

2 5 9 1.8 

3 5 9 1.8 

4 5 9 1.8 

5 5 9 1.8 

6 5 9 1.8 

7 5 9 1.8 

8 5 9 1.8 

9 5 9 1.8 

10 5 9 1.8 

 

Table 51. LEM2 induced rules for trip 

Scans Rules Conditions Conditions/rule 

0 8 15 1.875 

1 7 12 1.7143 

2 7 12 1.7143 

3 7 12 1.7143 

4 7 12 1.7143 

5 7 12 1.7143 

6 7 12 1.7143 

7 7 12 1.7143 

8 7 12 1.7143 

9 7 12 1.7143 

10 7 12 1.7143 
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CHAPTER 7. CONCLUSIONS 

 

Preliminary results presented in this study are consistent with earlier studies [5, 6], which 

indicate that multiple scanning approach performs better than dominant attribute approach by 

producing comparatively smaller and simpler rule sets. It was consistently observed from the 

results of multiple scanning approach that after scanning dataset for few iterations, variations 

with respect to number of intervals produced dampened significantly. Table 52 shows that after 

certain number of scans, further scanning did not affect outcome with respect to the number of 

intervals produced and the number of rules induced. 

Table 52. Variation dampening effect with MSA 

Data # scans # intervals 

before merging 

# intervals 

after merging 

LEM2 rules 

# rules # conditions 

m-bank 1 - 10 15 8 4 7 

m-echo 6 - 10 46 21 25 68 

m-globe 5 - 10 42 16 20 46 

m-image 7 - 10 140 43 58 64 

m-iris 6 - 10 28 11 10 20 

m-wine 1 - 10 26 21 11 37 

price 1 - 10 8 7 5 9 

table 1 - 10 8 7 5 9 

trip 1 - 10 10 8 7 12 

 

Further, number of intervals after merging operation consistently showed greater stabilization 

than those before merging operation. However, claim should be validated with more elaborate 

experiments and statistical tests. The two approaches presented here affirms the promise of 

entropy based approaches in discretization which clearly has a scope for further improvement. 

Besides incorporating novel ideas such as integrating discretization with merging procedures, 

immediate improvements can be achieved by implementing more efficient algorithms. The 

current implementation works well for moderately sized dataset but failed to produce result in a 

reasonable amount of time for bigger sized data set. Expense of time complexity becomes 
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obvious with increasing input size and as an example, among the studied datasets, 

common_combined_lers with 68 cases and 16280 attributes was too prohibitive to permit us 

from repeating experiments beyond one scan. The complex and recursive nature of algorithm can 

be restrictive but not prohibitive towards better implementation. We are hoping to ameliorated 

cost by implementing efficient program with more sophisticated data-structures and switching to 

platform-dependent programming language such as C++.   
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APPENDICES 

 

Following source files are included as an attachments 

Java source code 

 DomAttrApp.java - Dominant attribute approach. 

 MultScanApp.java - Multiple scanning approach. 

 

R source code 

 rough-set.R - Figure 1. Rough sets. 

 barplot.R - Figure 2. Probability distribution. 

 interval-count-da.R - Figure 4 - Figure 8. Interval distributions with dominant attribute 

approach. 

 interval-count-ms.R - Figure 9 - Figure 13. Interval distributions with multiple scanning 

approach 
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