
DOMINANT ATTRIBUTE AND MULTIPLE SCANNING APPROACHES

FOR DISCRETIZATION OF NUMERICAL ATTRIBUTES

BY

H. SHANKER RAO

Submitted to the graduate degree program in Electrical Engineering and Computer Science and

the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the

degree of Master of Science

Chairperson: Dr. Jerzy W. Grzymala-Busse

Dr. Perry Alexander

Dr. Doina Caragea

Date Defended: September 8, 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KU ScholarWorks

https://core.ac.uk/display/213408321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

The Thesis Committee for H. SHANKER RAO

certifies that this is the approved version of the following thesis:

DOMINANT ATTRIBUTE AND MULTIPLE SCANNING APPROACHES FOR

DISCRETIZATION OF NUMERICAL ATTRIBUTES

Chairperson: Dr. Jerzy W. Grzymala-Busse

Date approved: September 8, 2014

iii

ABSTRACT

Rapid development of high throughput technologies and database management systems has

made it possible to produce and store large amount of data. However, making sense of big data

and discovering knowledge from it is a compounding challenge. Generally, data mining

techniques search for information in datasets and express gained knowledge in the form of

trends, regularities, patterns or rules. Rules are frequently identified automatically by a technique

called rule induction, which is the most important technique in data mining and machine learning

and it was developed primarily to handle symbolic data. However, real life data often contain

numerical attributes and therefore, in order to fully utilize the power of rule induction techniques,

an essential preprocessing step of converting numeric data into symbolic data called

discretization is employed in data mining.

Here we present two entropy based discretization techniques known as dominant attribute

approach and multiple scanning approach, respectively. These approaches were implemented as

two explicit algorithms in a JAVA programming language and experiments were conducted by

applying each algorithm separately on seventeen well known numerical data sets. The resulting

discretized data sets were used for rule induction by LEM2 or Learning from Examples Module 2

algorithm. For each dataset in multiple scanning approach, experiments were repeated with

incremental scans until interval counts were stabilized. Preliminary results from this study

indicated that multiple scanning approach performed better than dominant attribute approach in

terms of producing comparatively smaller and simpler rule sets.

iv

ACKNOWLEDGEMENTS

It has been an honor for me to have a very special thesis committee for my Master’s degree.

Their support at various time points through the course of my study is invaluable and I am quite

sure that without their care, affection, help and guidance I wouldn’t have completed my degree.

First, I would like to express my gratitude and extend my sincere thanks to Dr. Jerzy W.

Grzymala-Busse for agreeing to be my thesis advisor. He has been a source of inspiration to me

and I really enjoyed learning data mining skills from him. I had taken all the courses he teaches

at The University of Kansas and I was convinced that I had met a gold-mine of knowledge. I was

initially amazed with his knowledge, simplicity and ability to present complex concepts in a

simplified manner, however, that also made me apprehensive for quite some time in approaching

him to request to be my advisor. He has been always extremely focused in his approach, very

much accessible for a friendly discussion and spent ample amount to time in understanding my

thought process. He taught me how to systematically approach and tackle a research problem.

Besides his guidance through research, I cannot forget the little big things he does to students in

general and in particular to me to ensure that I succeed and complete thesis in a timely manner.

I would like to extend thanks to Dr. Doina Caragea for extending her mentorship to me even

after I transfer from Kansas State University to The University of Kansas and agreeing to be my

thesis committee member. I had taken a Bioinformatics course she teaches in Kansas State

University and at that time it was unbelievable for me to find someone as elegant,

knowledgeable, skillful and honest as herself. Right after the completion of the course, I

requested her to become my thesis committee member and thereafter we consolidated upon that

v

relationship till date. I am very grateful for her invaluable guidance, friendship and for becoming

one of the very special persons in my life.

I would also like to thank Dr. Perry Alexander for agreeing to be my thesis committee member. I

had taken a Programming languages course taught by Dr. Alexander in the initial phase of my

Master’s degree. I was making a difficult transition from Bioinformatics / Molecular genetics to

Computer Science and I wasn’t sure of myself succeeding in the endeavor. Even though my

research focus was not directly related to Dr. Alexander’s research, his nice demeanor and

friendly attitude allowed me to discuss with him frankly my difficulties in adjusting in the new

environment. His help, support and encouragement to carry on helped me surpass initial phase. I

wish I was more involved in research activities with him.

Also, I am extremely thankful to Dr. Dongkyu Choi for giving me financial support in the form

of graduate assistantship and letting me gain valuable experience in his Cognitive Control

System Laboratory. I am also thankful for the financial assistance and guidance I received at

various time points from Dr. Gerald H. Lushington, Dr. Russ Waitman and Dr. Peter G. Smith

that helped me explore and pursue research career in the field of Computational biology and

Data mining.

Finally, I would like to thank my family, friends and academic & non-academic staff at The

University of Kansas for making my studies a success. And my sincere apologies for missing out

many many names here that have, overtime, contributed in me.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS .. vi

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. BACKGROUND ... 3

2.1. Knowledge discovery & data mining .. 3

2.2. Decision table ... 5

2.3. Rough set theory ... 6

2.4. Rule induction ... 8

2.5. Probability theory ... 10

2.6. Information theory and entropy .. 12

CHAPTER 3. DISCRETIZATION ... 15

3.1. Equal width intervals .. 15

3.2. Equal frequency intervals .. 16

3.3. Minimal class entropy method ... 16

3.4. Cluster analysis method.. 17

3.5. Entropy based discretization .. 18

3.5.1. Dominant attribute approach .. 18

3.5.2. Multiple scanning approach ... 19

3.6. Post processing .. 20

CHAPTER 4. IMPLEMENTATION .. 21

4.1. Computer platform ... 21

4.2. Programming language .. 21

4.3. Graphics ... 23

4.4. Data structures .. 23

4.5. Data sets ... 25

4.6. Instructions for running software ... 26

CHAPTER 5. EXPERIMENTS ... 28

5.1. Dominant attribute algorithm .. 28

vii

5.2. Multiple scanning algorithm .. 37

CHAPTER 6. RESULTS AND DISCUSSION ... 47

6.1. Discretization results... 47

6.2. Discretization results of bankruptcy data ... 54

6.2.1. Dominant attribute approach .. 54

6.2.2. Multiple scanning approach (10 scans) ... 59

6.3. LEM2 induced rules ... 64

CHAPTER 7. CONCLUSIONS ... 70

APPENDICES ... 72

REFERENCES .. 73

1

CHAPTER 1. INTRODUCTION

Machine learning, data mining and expert systems are interrelated subfields of artificial

intelligence. One of the primary objectives in artificial intelligence is to make the intelligent

agent learn rules from data automatically [1]. Whereas machine learning equips machine the

ability to learn by recognizing patterns present in training data and superimpose inferences later

on unseen data [2], data mining is defined as extraction of hidden, previously unknown, and

potentially useful high-level information from low-level data [3]. Expert systems are used to

implement specific domains of expertise where knowledge is represented in the form of rules and

reasoned in a given scenario by testing their applicability by induction or deduction [4]. These

special kind of computer programs have a wide scope in commercial, industrial and scientific

applications.

Real life data exhibit varied structure and there exist numerous data mining techniques, however,

no single technique can be considered the best that would be applicable on all scenarios. Often

raw data needs to be cleansed and transformed to make it suitable for data mining and knowledge

discovery.

Many real life applications involve data that are in numeric format, however, most of the

inductive learning algorithms, including the one used in this thesis, require data to be in symbolic

format. In order to use such rule induction algorithms, numeric data must be converted into a

symbolic format and the process of this conversion is known as discretization.

Since entropy based methods are regarded as superior among several existing discretization

methods, we present here two improved entropy based discretization methods viz. dominant

attribute approach and multiple scanning approach [5, 6]. Dominant attribute approach is a

2

purely recursive algorithm, where after each cycle, data set is split into subsets based on the

dominant attribute only and recursion continues until a stopping criterion is satisfied. On the

other hand, in multiple scanning approach, all attributes are simultaneously scanned for a fixed

number of times and if the stopping criterion is not yet satisfied, dominant attribute algorithm is

invoked to complete discretization. In both approaches, continuous attributes are initially

converted into discrete intervals and later some of the neighboring intervals are merged together.

The merging algorithm preserves consistency by implementing merge process in two steps: (a)

Safe merging – neighboring intervals are merged if all instances of them are labeled by the same

decision value; and (b) Proper merging – neighboring intervals are merged only if the result of

merging do not reduce level of consistency. Seventeen well known data sets, frequently used in

data mining experiments were chosen to test our discretization algorithms.

3

CHAPTER 2. BACKGROUND

Discretization of numerical attributes is one of the basic preprocessing techniques used in data

mining. Many discretization algorithms have been proposed, however, discretization based on

entropy is regarded as best. Before embarking upon entropy based discretization, we introduce

here the basic concepts of data mining, rough set theory, probability theory and information

theory.

2.1. Knowledge discovery & data mining

In statistics, the study of dependence is called regression. The goal is to summarize the observed

data as simply, usefully and elegantly as possible [7]. Regression analysis aims to construct a

suitable model by employing mathematical rigor on a small sample. The process is usually slow

and conclusions, expressed only in terms of statistical errors, lack explanation. On the other

hand, modern data mining (DM) process is fast, adventurous and explores entire population by

using powerful algorithms. It provides better explanation of results in terms of rule sets, decision

trees, graphs, support vectors, etc., while the predictive power of various algorithms is tested in

terms of confusion matrix on unseen data. Knowledge Discovery in Databases (KDD) is an

automatic, exploratory analysis and modeling of large data repositories. KDD is the organized

process of identifying valid, novel, useful, and understandable patterns from large and complex

data sets. DM is the core of KDD process, providing algorithmic infrastructure of rule induction

and inference engine to the overall knowledge acquisition framework. KDD is an iterative and

interactive process summarized in following steps [8]:

1. Understanding of the application domain: In this preparatory phase, the investigator gathers

information, understands the problem and defines goals. In the process, data miner makes up

4

understanding of consequences of various choices to be made during data cleansing,

preprocessing, data mining and post-processing phases.

2. Selecting and creating a data set: Having understood the problem and set goals for problem

solving, next step is to collect and organize data for knowledge discovery. The data from

varied sources is obtained and integrated into a common knowledgebase.

3. Preprocessing and cleansing: Integration of raw data collected from one or more sources

may not be straight-forward. Real data is often marred with errors, missing values and

technician bias. Preprocessing and cleansing phase is the opportunity to normalize, remove or

mitigate inconsistencies and enhance reliability of data significantly.

4. Data transformation: After the initial cleansing phase, data may be free from intrinsic flaws

but it may not be suitable for intake into the favorite data mining algorithm. Transformation

is the process of converting raw data into a form that is better suited for rule induction in the

targeted algorithm. Some of the frequently used methods include discretization, dimension

reduction, transforming dependent variable only, independent variables only or both kind of

variables simultaneously, etc.

5. Choosing the appropriate Data Mining task: Data mining may mean a different thing to

different people. Sometimes simple statistical analysis is sufficient whereas in other

occasions even a very sophisticated algorithm is not sufficient. Data mining may be broadly

subdivided into a problem of regression analysis, cluster analysis or classification.

Depending on project needs, investigator may choose a suitable data mining strategy.

6. Choosing the Data Mining algorithm: Having the broad strategy, next step is to decide on

the finer tactics. Many algorithms have been developed to solve the same problem and in

data mining too, different algorithms can achieve the same goal with different trade-offs. For

5

example, classification problem can be addressed by rule induction, generation of decision

trees, construction of neural networks, support vector machines, etc. whereas clustering

problem can be addressed by techniques of nearest-neighbor, K-means, hierarchical

clustering, etc. Each of the methods have some advantages and disadvantages and depending

on the availability of resources in terms of time, money and effort, investigator makes a

conscious choice of a particular method to be pursued.

7. Employing the Data Mining algorithm: The selected data mining algorithm is implemented

and various parameters are tuned to suit the datasets under investigation.

8. Evaluation: Performance of selected algorithms is evaluated on the experimental data sets.

This is usually done by a process called n-fold cross validation and summarizing outcome in

the form of confusion matrix. Confusion matrix comprise of 2 × 2 matrix where each slot is

occupied by the computed value variously known as true positive, false positive, false

negative and true negative respectively. Greater proportion of true positives and true

negatives imply worthiness of the algorithm.

9. Using and maintaining the discovered knowledge: The knowledge becomes active when the

implemented system is brought outside of the experimental environment and tested on

practical situations. Sustaining effectiveness in varied conditions determines robustness of

the implemented methodology. Providing periodic updates and implementing patches are

important components of any maintenance program.

2.2. Decision table

Data from which rules are induced are presented in the form of a table, in which cases and

attributes are represented by rows and columns respectively. An example of such table is

6

presented in Table 1. The last column usually represents a dependent variable called decision

that contains expert assigned values whereas all other columns are independent variables called

attributes. The set of all cases is denoted by 𝑈 and the set of all attributes is denoted by 𝐴.

Decision is denoted by 𝑑, and comprised of concepts. All cases in a particular concept are

labelled by the same decision value.

Table 1. Decision table

 ATTRIBUTES DECISION

A1 A2 … An d

C
A

S
E

S

1 𝑣11 𝑣21 … 𝑣𝑛1 𝑑1

2 𝑣12 𝑣22 … 𝑣𝑛2 𝑑2

3 𝑣13 𝑣23 … 𝑣𝑛3 𝑑3

… … … … … …

m 𝑣1𝑚 𝑣2𝑚 … 𝑣𝑛𝑚 𝑑𝑚

2.3. Rough set theory

In the seminal work on rough set theory, Z. Pawlak [9] made a clear distinction between rough

sets and classic sets. In classic set theory, sets were described as precise entities that are bound by

crisp boundaries and uniquely determined by its elements. However, many concepts in nature are

vague and since they are often associated with entities in the boundary region, understanding of

vagueness is critical in decision making. In order to overcome this limitation of classic sets, Z.

Pawlak introduced the concept of rough sets where imprecision is expressed by a boundary region

between sets. Crux of the theory prescribes to split universe into lower and upper approximations.

The lower approximation represents a subset of elements that certainly belong to the concept

whereas the upper approximation represents a subset, in which some of the elements certainly

7

belong to the concept and others possibly belong to the concept. All other elements certainly do

not belong to the concept (Figure 1).

Figure 1. Rough sets

Let 𝑈 be a nonempty set of elements called the universe. For any set 𝐴 of attributes, an

indiscernibility relation 𝑅(𝐴) is defined for any two cases 𝑥, 𝑦 ∈ 𝑈 by

(𝑥, 𝑦) ∈ 𝑅(𝐴) if and only if 𝑎(𝑥) = 𝑎(𝑦) for any 𝑎 ∈ 𝐴,

where 𝑎(𝑥) is the value of the attribute 𝑎 for the case 𝑥. Indiscernibility relation represents

uncertainty associated with elements in 𝑈. The indiscernibility relation 𝑅 is an equivalence

relation. An equivalence class, called an elementary set, and determined by any 𝑥 ∈ 𝑈, is

denoted by [𝑥]𝑅. Let 𝑋 ⊆ 𝑈 and in order to characterize 𝑋 with respect to 𝑅, rough set theory

introduced the following concepts:

 Lower approximation of a set 𝑋 with respect to 𝑅(𝐴) is the set of all elements which can be

for certain classified as 𝑋 with respect to 𝑅 (or certainly in 𝑋)

𝑅𝑋 = ⋃{[𝑥]𝑅|[𝑥]𝑅 ⊆ 𝑋}

𝑥∈𝑈

.

8

 Upper approximation of a set 𝑋 with respect to 𝑅(𝐴) is the set of all elements which can be

possibly classified as in 𝑋 (or possibly in 𝑋 in view of 𝑅(𝐴))

𝑅𝑋 = ⋃{[𝑥]𝑅|[𝑥]𝑅 ∩ 𝑋 ≠ ∅}

𝑥∈𝑈

.

 Boundary region of a set 𝑋 with respect to 𝑅 is the set of all elements, which can be

classified neither as 𝑋 nor as not-𝑋 with respect to 𝑅

𝑅𝑁𝑅𝑋 = 𝑅𝑋 − 𝑅𝑋.

Set 𝑋 is considered rough if the boundary region is nonempty, otherwise crisp.

2.4. Rule induction

Regularities hidden in the data are usually expressed in the form of rules and rule induction is

one of the most important techniques of machine learning and data mining [10]. For the decision

table shown in Table 1, let 𝐴 = {𝑎1, 𝑎2, . . , 𝑎𝑛} be a set of attributes, and let {𝑣1, 𝑣2, . . , 𝑣𝑛} be a

set of corresponding values, and 𝑑 = {𝑐1, 𝑐2, . . , 𝑐𝑘} a set of decision values. A block of attribute-

value pair, [(𝑎, 𝑣)] is a set of all cases with identical 𝑣 in 𝑎:

[(𝑎, 𝑣)] = {𝑥|𝑎(𝑥) = 𝑣}

Similarly, a block of decision values, [𝑐] is a set of all cases with identical 𝑐 in 𝑑:

[𝑐] = {𝑥|𝑑(𝑥) = 𝑐}

Patterns in the data are expressed in the form of a rule set. A single rule is a combination of one

or more (𝑎𝑖, 𝑣𝑗) pairs and (𝑑𝑐𝑥
) such as:

(𝑎1, 𝑣1) 𝑎𝑛𝑑 (𝑎2, 𝑣2) 𝑎𝑛𝑑 … 𝑎𝑛𝑑 (𝑎𝑛, 𝑣𝑛) 𝑡ℎ𝑒𝑛 (𝑑𝑐𝑥
)

or

(𝑎1, 𝑣1) & (𝑎2, 𝑣2) & … & (𝑎𝑛, 𝑣𝑛) → (𝑑𝑐𝑥
)

9

Any attribute-value pair in the left hand side of a rule is called condition part and the right hand

side is called a decision-value for the rule. If a rule induction algorithm explores set of all

attribute values, it is considered as global whereas if exploration is confined only to a set of

certain attribute-value pairs, it is called local.

1. Global covering: Let 𝐴 = {𝑎1, 𝑎2, . . , 𝑎𝑛} and 𝑑 = {𝑐1, 𝑐2, . . , 𝑐𝑛} be sets of attributes and

decision values, respectively. The equivalence classes of indiscernibility relation 𝑅(𝐴) are

called 𝐴-elementary sets and denoted by [𝑥]𝐴. A partition on 𝑈 constructed from all [𝑥]𝐴 will

be denoted by 𝐴∗. For decision variable, {𝑑}-elementary sets are called concepts, and the

corresponding partition is denoted as {𝑑}∗.

The simplest approach to rule induction is based on finding the smallest subset 𝐵 of the set 𝐴

that is sufficient to be used in a rule set. A partition 𝐵∗ is smaller than or equal to partition

{𝑑}∗ if and only if for each block 𝑃 of 𝐵∗ there exists a block 𝑃’ of {𝑑}∗ such that 𝑃 ⊆ 𝑃’. The

relation is expressed as 𝐵∗ ≤ {𝑑}∗, and called attribute dependency inequality. For a

decision 𝑑 we say that {𝑑} depends on 𝐵 if and only if 𝐵∗ ≤ {𝑑}∗, i.e., for any 𝐵-elementary

set [𝑥]𝐵, there exists a concept 𝐶 from {𝑑}∗ such that 𝑋 ⊆ 𝐶. A global covering of {𝑑} is a

subset 𝐵 of 𝐴 such that {𝑑} depends on 𝐵 and 𝐵 is minimal in 𝐴.

The algorithm to compute a single global covering is implemented as LEM1 (Learning from

Examples Module, version 1) algorithm and described in [10-13]. The LEM1 algorithm is

based on calculus on partitions on the entire universe U.

2. Local covering: LEM2 algorithm (Learning from Examples Module, version 2) [10-13]

presents another approach to rule induction where search space is limited to attribute-value

pairs only. Let 𝑇 be a set of attribute-value pairs. The block of 𝑇, denoted by [𝑇], is the

following set

10

⋂[𝑡]

𝑡∈𝑇

Let 𝐵 be a subset of 𝑑. Set 𝐵 depends on a set 𝑇 of attribute-value pairs 𝑡 = (𝑎, 𝑣) if and only

if [𝑇] is nonempty and [𝑇] ⊆ 𝐵. Set 𝑇 is a minimal complex of 𝐵 if and only if 𝐵 depends

on 𝑇 and no proper subset 𝑇’ of 𝑇 exists such that 𝐵 depends on 𝑇’. Let T be a nonempty

collection of sets of attribute-value pairs. Then T is a local covering of B if the following

conditions are satisfied:

(1) Each member 𝑇 of T is a minimal complex of 𝐵,

(2) 𝑈tϵT [𝑇] = 𝐵, and

(3) T is minimal, i.e., T has the smallest possible number of members.

2.5. Probability theory

Practical data mining often deals with data sets that are noisy, inconsistent or incomplete and

therefore rules induced from such data sets are associated with certain amount of uncertainty.

Probability theory is the calculus of uncertainty and it is a key concept in the field of data mining

and knowledge discovery. Some of the basic terms used in probability theory are briefly

described below [14]:

1. Random variable: A random variable is a variable selected at random from a statistical

population. If a random variable has a finite number of possible values, it is called a

discrete random variable, for example, number of students in a class, number of eggs in a

basket, etc. If possible values of a random variable are continuous, it is called a

continuous random variable, for example, height of students, temperature in℃, etc.

11

2. Probability: The probability of an event 𝐸 is defined as the ratio of number of favorable

outcomes, 𝑁𝑒 to the total number of possible outcomes 𝑁.

𝑃(𝐸) =
𝑁𝑒

𝑁

3. Conditional probability: For the two chance events 𝐸1 and 𝐸2, not necessarily

independent, conditional probability of 𝐸1 given 𝐸2 is defined as the ratio of occurrence

of both events, 𝐸1 and 𝐸2 together to the occurrence of 𝐸2 irrespective of 𝐸1.

𝑃(𝐸1|𝐸2) =
𝑃(𝐸1 ∩ 𝐸2)

𝑃(𝐸2)

4. Probability distribution: Probability distribution of a discrete random variable is a set of

probabilities associated with each of its possible values. For instance, consider a random

variable Color with a domain {green, yellow, yellow, red, blue, red, yellow}. Probability

associated with each value in Color is computed in Table 2 and the distribution is

displayed in Figure 2.

Table 2. Probability distribution

Random

variable

Probability

green 1/7 = 0.14

yellow 3/7 = 0.43

red 2/7 = 0.29

blue 1/7 = 0.14

Figure 2. Probability distribution

12

Similar treatment with continuous random variable is problematic because it is

impossible to assign small amount of probabilities to all possible values in a continuous

random variable. To overcome this problem, its range is divided into a number of

intervals and respective probabilities are computed as the number of cases falling into

those defined intervals. If we increase the number and decrease the width of intervals,

resulting probability distribution becomes almost a smooth curve.

5. Cumulative probability distribution: Cumulative probability of a value is the sum of

probabilities of all values up to itself in the ordered list and cumulative probability

distribution is the set of all cumulative probabilities for possible values in the random

variable. Table 3 shows respective cumulative probabilities for the values in Table 2.

Table 3. Cumulative probability distribution

Random

variable

Probability Cumulative

probability

green 0.14 0.14

yellow 0.43 0.57

red 0.29 0.86

blue 0.14 1.00

Probabilities for continuous random variables are computed as the area under a curve and

the total area under the curve is equal to 1.

2.6. Information theory and entropy

Information theory started as a subfield to communication theory and primarily addressed issues

with data compression and data communication. However, its domain has grown and made

significant contributions to other fields of study such as statistical physics, computer science,

statistical inference, probability, etc. [15]. Entropy, relative entropy and mutual information are

the fundamental quantities of information theory and are defined in terms of probability

13

distributions. These concepts were first formulated and introduced in relation to communication

theory by C. E. Shannon [16]. They characterize behavior of random variables by quantifying

amount and rate of information produced by the random processes.

Let a random process generates 𝑛 possible events with probabilities of 𝑝1, 𝑝2, … , 𝑝𝑛 respectively.

The entropy of such a variable is defined by:

𝐻(𝑋) = − ∑ 𝑝𝑖 . log 𝑝𝑖

𝑛

𝑖=1

This quantity measures randomness or uncertainty associated with the variable. For example, the

quantity vanishes for a completely certain event and measures high for highly uncertain event

i.e., there are more choices with equally likely events. The quantity plays a central role in

information theory as it provides measures of information, choice and uncertainty. Entropy of 𝑋,

denoted by 𝐻(𝑋), has following properties:

1. 𝐻(𝑋) = 0 if and only if all but one 𝑝𝑖 are zero and the sole non-zero probability is equal to

unity. Thus entropy vanishes only when the outcome of a particular event is certain.

Otherwise it has a positive value.

2. For a given 𝑛, 𝐻(𝑋) is maximum and equal to 𝑙𝑜𝑔 𝑛 when all the 𝑝𝑖 are equal. This is the

most uncertain situation.

3. Let 𝑥 and 𝑦 are two random variables with 𝑚 and 𝑛 possible outcomes respectively. Let 𝑝𝑖𝑗

be the probability of the joint occurrence of 𝑖𝑡ℎ and 𝑗𝑡ℎ instance of 𝑥 and 𝑦 respectively.

Marginal entropies of two variables are defined by:

𝐻(𝑥) = − ∑ 𝑝𝑖,𝑗 . log ∑ 𝑝𝑖,𝑗

𝑛

𝑗=1

𝑚,𝑛

𝑖=1,𝑗=1

14

𝐻(𝑦) = − ∑ 𝑝𝑖,𝑗 . log ∑ 𝑝𝑖,𝑗

𝑚

𝑖=1

𝑚,𝑛

𝑖=1,𝑗=1

It can be easily observed that 𝐻(𝑥, 𝑦) ≤ 𝐻(𝑥) + 𝐻(𝑦). This imply that the uncertainty of a

joint event is always less than or equal to the sum of the individual uncertainties.

4. Any change toward equalization of the probabilities 𝑝1, 𝑝2, … , 𝑝𝑛 increases 𝐻(𝑋).

5. For the random variables 𝑥 and 𝑦, conditional entropy of 𝑦 given 𝑥 is defined as the average

of the entropy of 𝑦 for each value of 𝑥, weighted according to the probability of getting that

particular 𝑥:

𝐻(𝑦|𝑥) = − ∑ 𝑝𝑖,𝑗. log 𝑝𝑗|𝑖

𝑚,𝑛

𝑖=1,𝑗=1

Where 𝑝𝑗|𝑖 is the conditional probability of 𝑝𝑗 given 𝑝𝑖. Conditional entropy measures

average uncertainty of 𝑦 when 𝑥 is known.

15

CHAPTER 3. DISCRETIZATION

Discretization is a family of data transformation techniques in which continuous numerical

values are transformed into a finite set of discrete intervals. For a numerical attribute 𝐴 with an

interval [𝑎, 𝑏] as range, discretization of 𝐴 is defined as a partition of the range into 𝑛 intervals:

{[𝑎0, 𝑎1), [𝑎1, 𝑎2), … , [𝑎𝑛−2, 𝑎𝑛−1), [𝑎𝑛−1, 𝑎𝑛]}

where 𝑎0 = 𝑎, 𝑎𝑛 = 𝑏, and 𝑎𝑖 < 𝑎𝑖+1 for 𝑖 = 0, 1, … , 𝑛 − 1. The numbers 𝑎1, 𝑎2, … , 𝑎𝑛−1 are

called cut-points. Discretization methods are called local if attributes are processed one at a time

and global if all attributes are simultaneously considered towards selection of a best cut-point. A

comprehensive review of discretization methods can be found in [6, 17-19].

3.1. Equal width intervals

This is the simplest kind of discretization technique where entire range is partitioned into a

number of equal width intervals. According to H. A. Sturges [20], for an attribute 𝐴 with 𝑁 cases

and range 𝑎𝑁 − 𝑎1, optimal class intervals 𝐶𝐿, can be estimated from the formula:

𝐶𝐿 =
𝑎𝑁 − 𝑎1

1 + 3.332 log 𝑁

This method can be used for computation of basic summary statistics of frequency distributions,

however, it does not take into account the class information and it generally fares poor during

rule induction processes. With equal width interval methods, it is difficult to determine the

optimal number of intervals and often the optimal count is settled by running the learning

algorithm iteratively on same data set but with incremental interval count on each iteration. The

process is cumbersome and the determined number may not be optimal.

16

3.2. Equal frequency intervals

Another simple approach where interval widths may vary but sample frequency is same in every

interval and therefore all discretized intervals have equal information content. Again, the desired

number of intervals must be determined stochastically or supplied by the user.

3.3. Minimal class entropy method

The method computes class entropy associated with subsets of values partitioned by the selected

cut-point. Let class 𝐶 has 𝑘 concepts associated with a set 𝑆, then class entropy of 𝑆, 𝐸(𝑆) is

defined as:

𝐸(𝑆) = − ∑
|𝑐𝑖|

|𝑆|
 log2

|𝑐𝑖|

|𝑆|

𝑘

𝑖=1

where |𝑆| and |𝐶𝑖| are the cardinalities of 𝑆 and 𝑖𝑡ℎconcept respectively. Negative sign in the

expression assures that the quantity is always positive, whose lower value implies closer

association (or better fit) between set and class. To evaluate a cut-point 𝑞 for an attribute 𝐴,

weighted average of class entropies 𝐸(𝐴, 𝑞; 𝑆) of the partitioned subsets 𝑆1 and 𝑆2 are

determined as:

𝐸(𝐴, 𝑞; 𝑆) =
|𝑆1|

|𝑆|
 𝐸(𝑆1) +

|𝑆2|

|𝑆|
 𝐸(𝑆2)

This quantity is called the class information entropy [21]. Binary discretization for an attribute is

determined by computing 𝐸(𝐴, 𝑞𝑖; 𝑆) for all possible cut-points and selecting the one for which

the quantity is minimum. The process is recursively applied to the subsets until a stopping

criteria is satisfied. Minimum description length principle (MDLP) criteria is one of such

17

approaches that accepts cut-point if the result of partition leads to a positive information gain,

otherwise recursion in the discretization process stops without further partitioning [22].

3.4. Cluster analysis method

Cluster analysis is frequently used for unsupervised machine learning where class information is

not taken into consideration. The main idea is to compute one-to-one distances among all

samples and partition them accordingly into a number of clusters. Again, deciding on the optimal

number of clusters is an iterative process that can be determined from a number of different

approaches. Often the process is more of an art than science and it is often swayed by an expert’s

predispositions. Cluster analysis based discretization [18] described here uses level of

consistency as the stopping criterion during cluster formation stage. 𝐴∗ and {𝑑}∗ represent

partitions on 𝑈 constructed from 𝐴 and 𝑑, respectively. The level of consistency, 𝐿(𝐴) is defined

as:

𝐿(𝐴) =
∑ |𝐴𝑋|𝑋∈{𝑑}∗

|𝑈|

A desired value for level of consistency is unity after discretization. Therefore, stopping

condition of recursion in the binary discretization algorithm is 𝐿(𝐴) = 1. Recursion prevails as

long as 𝐿(𝐴) < 1. The discretization process consists of two distinct steps, (a) cluster formation

and (b) post-processing. Each of the steps are briefly described below:

1. Cluster formation: If there are 𝑚 samples and 𝑛 numeric attributes, all attributes are

normalized and 𝑚 × 𝑚 distance matrix is constructed. The choice of distance measure affects

clustering and therefore it should be chosen carefully. In the agglomerative technique of

clusters analysis, initially every sample is treated as a single cluster and the two closest

18

clusters are fused together. Fused cluster is treated as a single entity and its centroid of is

used to re-compute distances from remaining clusters. Consistency of clusters is computed

by a rough set approach and fusion process is repeated until the level of consistency denoted

by 𝐿𝑐 is preserved to the original state. In rough set theory, data with a set of samples 𝑈 and a

set of attributes 𝐴 is consistent with respect to the decision 𝑑, if and only if 𝐴∗ ≤ {𝑑}∗,

where 𝐴∗ and {𝑑}∗ are partitions on 𝑈 constructed from 𝐴 and 𝑑 respectively.

2. Post processing: Cluster formation often induce excessive intervals, some of which are fused

together during the post-processing step. Some of the neighboring intervals are merged

together in such a way that the consistency of resulting clusters is preserved to the original

state. Let the neighboring intervals are denoted by 𝑖. . 𝑗 and 𝑗. . 𝑘, then merging them together

results in a new interval 𝑖. . 𝑘. The merging algorithm consists of two steps, safe merging and

proper merging. (a) Safe merging: Neighboring intervals are merged if all instances of them

are labeled by the same decision value. (b) Proper merging: Neighboring intervals are

merged if the result of merging do not reduce level of consistency.

3.5. Entropy based discretization

Entropy based discretization takes into consideration the information content of both attribute

and decision variables and therefore it is considered as one of the most successful approach. We

present here two improved entropy based discretization strategies viz. dominant attribute

approach and multiple scanning approach [5, 6].

3.5.1. Dominant attribute approach

1. Identify best attribute: Best attribute is the one which has highest information gain.

Given decision 𝑑, information gain 𝐼(𝑎) associated with an attribute 𝑎 is defined as:

19

𝐼(𝑎) = 𝐻𝑑(𝑈) − 𝐻(𝑑|𝑎)

where 𝐻𝑑(𝑈) is the entropy of 𝑑 and 𝐻(𝑑|𝑎) is the conditional entropy of 𝑑 given 𝑎.

2. Identify best cut-point: For the best attribute, sort the values and enumerate all

possible cut-points. Find out the best cut-point which has lowest class information

entropy.

3. Split dataset: The best cut-point splits dataset 𝑆 (initially 𝑆 is equal to 𝑈) into two

smaller datasets, 𝑆1 and 𝑆2.

4. Stopping criteria: Compute level of consistency 𝐿(𝐴) of the best cut-point and if

𝐿(𝐴) < 1, apply steps 1 through 3 recursively to subsets 𝑆1 and 𝑆2 separately.

If 𝐿(𝐴) = 1, recursion stops and binary discretization for a particular subset is

complete.

3.5.2. Multiple scanning approach

1. Total number of scans: The parameter denoted by 𝑡, must be provided by the user.

2. Identify best cut-points: Let a set of numerical attributes is denoted by 𝐴. Scan the

entire dataset and find out best cut-point for every attribute in 𝐴. For each attribute

separately, sort the values and enumerate all possible cut-points. Find out the best cut-

point which has lowest class information entropy.

3. Level of consistency: Discretize all attributes in 𝐴 with best cut-points and denote a

new set of discretized attributes by 𝐴𝐷. Compute level of consistency 𝐿(𝐴𝐷) and

if 𝐿(𝐴𝐷) < 1, compute partition (𝐴𝐷)∗ on 𝑈.

4. Split dataset: For ∀𝑥 ∈(𝐴𝐷)∗ , if 𝑥 ≰ {𝑑}∗ extract subset 𝑆 with all elements of 𝑥. If

number of scans is less than 𝑡, apply recursively steps 1 through 4 for subset 𝑆.

5. Stopping criteria: The algorithm stops when the number of predefined scans are

20

exhausted and level of consistency is preserved to 100%.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑎𝑛𝑠 = 𝑡; 𝑎𝑛𝑑

𝐿(𝐴𝐷) = 1

If 𝑡 has exhausted but 𝐿(𝐴𝐷) < 1, apply dominant attribute algorithm to the

remaining subsets.

3.6. Post processing

Excess intervals produced by dominant attribute approach and multiple scanning approach are

handled by post processing procedure described earlier for cluster analysis based discretization.

Briefly again, some of the neighboring intervals are merged together in such way that the number

of intervals are reduced and at the same time level of consistency is preserved. Let the

neighboring intervals are denoted by 𝑖. . 𝑗 and 𝑗. . 𝑘, then merging them together results in a new

interval 𝑖. . 𝑘. The merging algorithm consists of two steps:

a) Safe merging: Neighboring intervals are merged if all instances of them are labeled by a

same decision value.

b) Proper merging: Neighboring intervals are merged if the result of merging do not reduce

level of consistency.

21

CHAPTER 4. IMPLEMENTATION

4.1. Computer platform

All experiments were run on a machine located in the Eaton Hall laboratory, EECS department,

University of Kansas. Machine configuration included 8 GB of RAM with 64 bit processor

(Intel(R) Xeon(R) CPU E3-1270 V2 @ 3.50GHz) under Fedora (Linux) operating system.

4.2. Programming language

The algorithms were implemented in Java programming language using Eclipse integrated

development environment (IDE) Kepler service release 1. Java was originally developed by

James Gosling, Patrick Naughton, Chris Warth, Ed Frank and Mike Sheridan at Sun

Microsystems, Inc. in 1991 [23]. The main impetus for the development of Java was to liberate

the language from platform dependence and although heavily inspired from C++, Java was never

meant to replace C++ (Figure 3). Java is a platform independent language and therefore once

written, it can be run anywhere.

Some of the salient features of Java include:

1. Simple: Java was designed to be easy to learn and use effectively. Complex operations such

as handling memory leaks and garbage collection are taken care by automatic memory

management and thus all the complexities are hidden from the programmer. Since Java

inherits syntax and object-oriented features of C++, many C++ programmers find it rather

simple to learn Java.

2. Platform independent: Both system software and machine architecture have been evolving

continuously and therefore, one of the challenges for programmers is to maintain their own

22

code for execution on different platforms and at different times. Java allows program to be

written once and run anywhere/anytime.

BCPL

(Martin Richard, 1966)

↓

B

(Ken Thomson, Dennis Ritchie, 1969)

↓

C

(Dennis Ritchie, 1969-73)

↓

C++

(Bjarne Stroustrup, 1983)

↓

Java

(James Gosling, 1991)

Figure 3. Evolution of Java

3. Bytecode: Java achieved platform independence by implementing bytecode and Java Virtual

machine (JVM). The Java compiler processes source code and generate bytecode. Bytecode

is different from usual executable code and it is highly optimized for JVM. JVM creates a

layer between native platform and the bytecode. Since the upper layer of JVM is always

same, a bytecode can be run on a wide variety of platforms.

4. Secure: Java restricts internet based applets to its own execution environment and therefore

other system resources are protected from unauthorized access.

5. Easy to distribute via internet: Java handles TCP/IP protocols and therefore its applications

can be easily transmitted via internet.

6. Industry standard: Platform independence give a big advantage to any industry and the

automatic memory management hides unnecessary technical jargon.

23

4.3. Graphics

All graphics were generated by using suit of plotting packages implemented in R programming

languages (R version 3.1.0 (2014-04-10) -- "Spring Dance") [24] with RStudio version 0.98.953

integrated development environment (IDE).

4.4. Data structures

A complex problem can be divided into a number of sub-problems and the solution can be

reached in a different ways. Algorithms must be written to maximize the chances of achieving

goal and minimize the amount of time and effort involved. The efficiency issue becomes most

obvious when the size of input data is large. As an example, a poorly written algorithm for

maximum subsequence sum takes 2.28 seconds for input size of 1000 but it fails to come up with

solution for larger dataset of size 10,000. On the other hand, same problem can be solved in

0.0003 seconds with efficient algorithm [25]. Keeping-up with the earlier discussion, data

mining algorithms are highly complex, exploration intensive and goal oriented. Specific choices

made in the course of action has profound impact on the quality of results.

Java provides a convenient facility for using desired data structures [26]. The java.util package

contains a powerful subsystems called collections which is Java’s standard framework of

handling group of objects. The framework has highly efficient implementations of various

fundamental data structures such as arrays, linked lists, trees, hash tables, etc. Some of the data

structures used in this thesis work and respective running times in big O notation [27] is briefly

summarized below.

1. List interface: List is a sequence of elements where duplicates are allowed and ordering is

not important. Elements in the list are accessed by their position and elements at specific

24

position can be inserted or removed.

 LinkedList: It provides a bidirectional linked-list data structure. It has two constructors,

the first builds a head (empty linked list) and the second builds a linked list on it. Because

every node has to maintain two links, Java’s LinkedList is a very inefficient

implementation. Average running times for insert, delete and search operations

are 𝑂(1), 𝑂(1) and 𝑂(𝑛) respectively.

 ArrayList: In Java, ArrayList supports dynamic arrays that is created with an initial size

and it can automatically grow or shrink during run time. Average running times for insert,

delete and search operations are 𝑂(𝑛), 𝑂(𝑛) and 𝑂(1) respectively.

2. Set interface: A set does not allow duplicate elements.

 TreeSet: It uses tree data structure where objects are stored in sorted, ascending order.

Average running times for insert, delete and search operations are 𝑂(𝑙𝑜𝑔 𝑛), 𝑂(𝑙𝑜𝑔 𝑛)

and 𝑂(𝑙𝑜𝑔 𝑛) respectively.

 HashSet: It uses hash table for storage. Hash table stores information by using a

mechanism called hashing. In hashing, the informational content of a key is used to

determine a unique value, called its hash code. The hash code is then used as the index at

which the data associated with the key is stored. The advantage of hashing is that it

allows the execution time of basic operations to remain constant. Average running times

for insert, delete and search operations are 𝑂(1), 𝑂(1) and 𝑂(1) respectively.

3. Map interface: A map is an object that stores associations between key/value pairs. The key

must be unique, but the values may be duplicated.

 TreeMap: TreeMap implements the map interface by using a tree. A TreeMap provides

an efficient means of storing key/value pairs in sorted order and allows rapid retrieval. A

25

TreeMap guarantees that its elements will be sorted in ascending key order. Average

running times for insert, delete and search operations are 𝑂(𝑙𝑜𝑔 𝑛), 𝑂(𝑙𝑜𝑔 𝑛)

and 𝑂(𝑙𝑜𝑔 𝑛) respectively.

 HashMap: The HashMap class uses a hash table to implement the Map interface. This

allows the execution time of basic operations to remain constant. The order in which

elements are added to a hash map is not necessarily the order in which they are read by an

iterator. Average running times for insert, delete and search operations are 𝑂(1), 𝑂(1)

and 𝑂(1) respectively.

4. Iterator: Often it is necessary to cycle through the elements in a collection. Every collection

class implements an iterator with similar interface and therefore, elements of any collection

class can be accessed through the methods defined in the iterator. In other words, iterator

interface gives a general-purpose, standardized way of accessing the elements within a

collection.

5. Loops: In addition to well established data structures, due care was taken while looping

through procedures. For example, if the requirement was just to iteration through list, while

loop was preferred over for loop. FOR loop has an overhead of computing list size and

increment operator. Because nesting has exponential cost on the algorithms, nested loops

were avoided whenever possible.

4.5. Data sets

Data sets used to conduct experiments are summarized in Table 4 and most of them are available

in the Machine Learning Repository, University of California Irvine. Number of cases, attributes

and classes for each data set along with pointers to source information is included in the table.

26

Table 4. Data sets

Data set Number of

Cases Attributes Concepts

Australian Credit Approval [28]

(AUSTR)

690 14 2

NCBI GEO number: GSE2564 [29]

(COMMON-COMBINED-LERS)

68 16280 11

M-BANK[30] 66 5 2

Echocardiogram [28]

(M-ECHO)

74 7 2

Glass Identification [28]

(M-GLASS)

214 9 6

M-GLOBE[28] 33 5 4

Image Segmentation [28]

(M-IMAGE)

210 19 7

Iris [28]

(M-IRIS)

150 4 3

Wine [28]

(M-WINE)

178 13 3

Abalone [28]

(N-ABALONE)

4177 8 28

Liver Disorders [28]

(N-BUPA)

345 6 2

Ecoli [28]

(N-ECOLI)

336 7 8

Pima Indians Diabetes [28]

(N-PIMA)

768 8 2

Waveform Database Generator [28]

(N-WAVE-512)

512 21 3

PRICE[6] 7 3 5

TABLE[5] 7 3 5

TRIP[12] 8 3 2

4.6. Instructions for running software

The software can be run from the directory containing java source code. It is convenient to create

a project directory and execute program from there. From the project directory, typing make will

compile, link and execute program and on-screen instructions will guide user through rest of the

27

program.

1. CD to project directory

2. Type ‘make’ to execute program (program will then invoke user to enter other particulars)

a. input file name

b. number of scans

c. whether to save list of cutpoints

d. output file name – discretization

e. if response of (c) is 'y', provide name for cutpoints file

f. output file name - safe merging

g. output file name - proper merging

28

CHAPTER 5. EXPERIMENTS

Algorithms implemented for dominant attribute approach and multiple scanning approach were

applied separately on all 17 data sets. Stopping criteria for dominant attribute approach was to

preserve level of consistency equal to 100%. For multiple scanning approach, experiments were

repeated with incremental scan counts. As the number of scans increases, fluctuations with

discretized interval counts gradually decreases and when the fluctuation was no longer

significant, the number of scans was considered optimal. The resulting discretized data sets were

then used to induce rules using LEM2 algorithms implemented in the LERS data mining system.

To clarify things, we describe here worked out example of each algorithm by using a data set

shown in Table 5:

Table 5

CASE ATTRIBUTE DECISION

weight length height Price

1 0.8 0.3 7.2 very small

2 0.8 1.1 7.2 Small

3 0.8 1.1 10.2 Medium

4 1.2 0.3 10.2 Medium

5 1.2 2.3 10.2 Medium

6 2.0 2.3 10.2 High

7 2.0 2.3 15.2 very high

5.1. Dominant attribute algorithm

We illustrate this method by using data set shown in Table 5.

A. Find best attribute. Dominant attribute is the one which results in maximum information

gain, where information gain is given as: 𝐼(𝑎) = 𝐻𝑑(𝑈) − 𝐻(𝑑|𝑎). In this expression, since

29

entropy of decision do not change, we infer that information gain is maximum for the

attribute which has minimum conditional entropy. Conditional entropy of the decision d is

defined as:

𝐻(𝑑|𝑎) = − ∑ 𝑝(𝑎𝑗). ∑ 𝑝(𝑑𝑖|𝑎𝑗). log 𝑝(𝑑𝑖|𝑎𝑗)

𝑛

𝑖=1

𝑚

𝑗=1

where 𝑎1, 𝑎2, . . , 𝑎𝑚 are all values of 𝑎 and 𝑑1, 𝑑2, . . , 𝑑𝑛 are all concepts in 𝑑. The computed

values of conditional entropies of respective attributes in Table 5 is:

H(price|weight) = 0.965

H(price|length) = 1.25

H(price|height) = 0.745*

Minimal conditional entropy is associated with height.

B. Find best cut-point. Next step is to find the best cut-point for height. To enumerate all

potential cut-points, we first sort unique values in the attribute and find mid-point between

the adjacent values. For height, the potential cut-points are 8.7 and 12.7:

Potential cut-points = 7.2 8.7 10.2 12.7 15.2

To evaluate a cut-point 𝑞 in a variable 𝑉, weighted average of class entropies 𝐸(𝑉, 𝑞; 𝑆) of

the partitioned subsets 𝑆1 and 𝑆2 are determined as:

𝐸(𝑉, 𝑞; 𝑆) =
|𝑆1|

|𝑆|
 𝐸(𝑆1) +

|𝑆2|

|𝑆|
 𝐸(𝑆2)

The computed values of 𝐸(𝐴, 𝑞; 𝑆) for each cut-point is:

E(height, 8.7, U) = 1.265*

E(height, 12.7, U) = 1.536

Since minimal value is associated with the 8.7, we consider it as the best cut-point.

30

C. Level of consistency. The level of consistency, 𝐿(𝐵) is defined as:

𝐿(𝐵) =
∑ |𝐵𝑋|𝑋∈{𝑑}∗

|𝑈|

Level of consistency for the partitioned data set across cut-point, height
8.7

, 𝐿(𝐵) = 0.

Since 𝐿(𝐵) < 1, partition Table 5 at cut-point height
8.7

, and repeat steps A, B and C

recursively with both subsets, Table 6 and Table 7.

Table 6

CASE ATTRIBUTE DECISION

weight length height price

1 0.8 0.3 7.2 very small

2 0.8 1.1 7.2 small

Table 7

CASE ATTRIBUTE DECISION

weight length height price

3 0.8 1.1 10.2 medium

4 1.2 0.3 10.2 medium

5 1.2 2.3 10.2 medium

6 2.0 2.3 10.2 high

7 2.0 2.3 15.2 very high

Consider Table 6.

A. Find best attribute. Computed values of conditional entropies for three attributes:

H(price|weight) = 1

H(price|length) = 0*

H(price|height) = 1

Minimal conditional entropy is associated with lenght.

B. Find best cut-point. Only potential cut-point for length is 0.7:

31

Potential cut-points = 0.3 0.7 1.1

C. Level of consistency. Level of consistency for the partitioned data set across cut-point,

length
0.7

, 𝐿(𝐵) = 1. Since level of consistency is 100%, stopping criterion has been satisfied.

Consider Table 7

A. Find best attribute. Again, we compute conditional entropy for each attribute:

H(price|weight) = 0.4*

H(price|length) = 0.95

H(price|height) = 0.65

Minimal conditional entropy is associated with weight.

B. Find best cut-point. For weight, potential cut-points and conditional entropy associated with

each cut-point is computed as:

Potential cut-points = 0.8 1.0 1.2 1.6 2.0

Conditional entropy,

E(weight, 1.0, U) = 1.2

E(weight, 1.6, U) = 0.4*

Since minimal value is associated with the 1.6, we consider it as the best cut-point.

C. Level of consistency at cut-point, weight
1.6

, 𝐿(𝐵) = 0.6. Since 𝐿(𝐵) < 1, split Table 7 at cut-

point weight
1.6

, and repeat steps A, B and C recursively with the resulting subsets, Table 8

and Table 9.

Table 8

CASE ATTRIBUTE DECISION

weight length height price

3 0.8 1.1 10.2 medium

4 1.2 0.3 10.2 medium

32

5 1.2 2.3 10.2 medium

Table 9

CASE ATTRIBUTE DECISION

weight length height price

6 2.0 2.3 10.2 high

7 2.0 2.3 15.2 very high

Consider Table 8. Decision value of all cases in Table 8 are identical, which means the data set

is consistent and therefore we do not need to discretize it any further.

Consider Table 9

A. Find best attribute. Computed values of conditional entropy for three attributes are:

H(price|weight) = 1

H(price|length) = 1

H(price|height) = 0*

Minimal conditional entropy is associated with height.

B. Find best cut-point for height

Potential cut-points = 10.2 12.7 15.2

C. Level of consistency at cut-point, height
12.7

, 𝐿(𝐵) = 1. Since level of consistency is 100%,

we conclude that stopping criterion has been satisfied.

There are no more attributes to be discretized and the recursion is now complete. The final set of

cut-points are:

height → 8.7, 12.7

weight → 1.6

length → 0.7

33

And the resulting discretized table is shown in Table 10. However, this table may have excess

intervals which should be removed before using the table for rule induction.

Table 10. Discretized table

CASE ATTRIBUTE DECISION

weight length height price

1 0.8..1.6 0.3..0.7 7.2..8.7 very small

2 0.8..1.6 0.7..2.3 7.2..8.7 small

3 0.8..1.6 0.7..2.3 8.7..12.7 medium

4 0.8..1.6 0.3..0.7 8.7..12.7 medium

5 0.8..1.6 0.7..2.3 8.7..12.7 medium

6 1.6..2.0 0.7..2.3 8.7..12.7 high

7 1.6..2.0 0.7..2.3 12.7..15.2 very high

Post processing. Next we will describe the two-stage merging procedure to address the issue of

excessive intervals.

A. Safe merging: For any attribute and for any two neighboring intervals 𝑖. . 𝑗 and 𝑗. . 𝑘 of the

same discretized attribute, if both intervals are labeled by the same decision value, both

intervals are merged, i.e., replaced by a new interval 𝑖. . 𝑘.

a. Weight: Neighboring intervals

0.8..1.6 → very small

small

medium

1.6..2.0 → high

very high

Since two intervals are differently labeled, they cannot be merged.

b. Length: Neighboring intervals

34

0.3..0.7 → very small

medium

0.7..2.3 → small

 medium

 high

 very high

Since two intervals are differently labeled, they cannot be merged.

c. Height: Neighboring intervals

7.2..8.7 → very small

 small

8.7..12.7 → medium

 high

12.7..15.2 → very high

Since all neighboring intervals are differently labeled, they cannot be merged.

B. Proper merging: For any attribute and for any two neighboring intervals 𝑖. . 𝑗 and 𝑗. . 𝑘 of the

same discretized attribute, if a result 𝑖. . 𝑘 of merging does not reduce the level of

consistency 𝐿(𝐴𝐷), where 𝐴𝐷 is the current set of discretized attributes, both intervals are

merged (replaced by a new interval i..k).

A partition on 𝑈 constructed from all 𝐴-elementary sets of 𝐼𝑁𝐷(𝐴) is denoted by 𝐴∗. For

decision variable, {𝑑}-elementary sets are called concepts, and denoted as {𝑑}∗. For the

discretized table, Table 10:

{𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}}

{𝐴}∗ = {{1}, {2}, {3, 5}, {4}, {6}, {7}}

35

Therefore, level of consistency,

𝐿(𝐴) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7

=
|{1}| + |{2}| + |{3,4}, {5}| + |{6}| + |{7}|

7

=
1 + 1 + 3 + 1 + 1

7

= 1

a. Weight: After merging 0.8..1.6 and 1.6..2.0

{𝐴}∗ = {{1}, {2}, {3, 5, 6}, {4}, {7}}

And new level of consistency,

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7

=
|{1}| + |{2}| + |{4}| + ∅ + |{7}|

7

=
1 + 1 + 1 + 0 + 1

7

= 0.57

Merging intervals lead to reduction in level of consistency. Therefore, they cannot be

merged together.

b. Length: After merging 0.3..0.7 and 0.7..2.3

{𝐴}∗ = {{1, 2}, {3, 4, 5}, {6}, {7}}

And new level of consistency,

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7

=
∅ + ∅ + |{3,4,5}| + |{6}| + |{7}|

7

36

=
3 + 1 + 1

7

= 0.71

Merging intervals lead to reduction in level of consistency. Thus, they also cannot be

merged together.

c. Height: Height has two cut-points and therefore there are two potential merges for the

attribute. First we consider merging neighboring intervals 7.2..8.7 and 8.7..12.7 and then

intervals 8.7..12.7 and 12.7..15.2.

 After merging 7.2..8.7 and 8.7..12.7,

{𝐴}∗ = {{1, 4}, {2, 3, 5}, {6}, {7}}

New level of consistency,

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7

=
∅ + ∅ + ∅ + |{6}| + |{7}|

7

=
0 + 0 + 0 + 1 + 1

7

= 0.29

Merging intervals lead to reduction in level of consistency. Thus, they cannot be

merged together.

 After merging 8.7..12.7 and 12.7..15.2

{𝐴}∗ = {{1}, {2}, {3, 5}, {4}, {6, 7}}

Therefore, new level of consistency,

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7

37

=
|{1}| + |{2}| + |{3,5}, {4}| + ∅ + ∅

7

=
1 + 1 + 3

7

= 0.71

Merging intervals lead to reduction in level of consistency. Thus, they cannot be

merged either.

Since none of the neighboring intervals could be merged by interval merging, final discretized

data set remains same as Table 10.

5.2. Multiple scanning algorithm

We again consider Table 5 to illustrate a worked out example of multiple scanning algorithm.

Scan t = 1

A. Find best cut point for each attribute

To evaluate a cut-point q in a variable 𝑉, weighted average of class entropies 𝐸(𝑉, 𝑞; 𝑆) of

the partitioned subsets 𝑆1 and 𝑆2 are determined as:

𝐸(𝑉, 𝑞; 𝑆) =
|𝑆1|

|𝑆|
 𝐸(𝑆1) +

|𝑆2|

|𝑆|
 𝐸(𝑆2)

For each attribute separately, we first sort their unique values and then consider mid-points

between adjacent values as potential cut-points. For each potential cut-point, we compute

weighted average of class entropy and mark the best cut-point with an asterisk.

Weight: Potential cut-points = 0.8 →1← 1.2 →1.6← 2.0

 Conditional entropy,

 𝐸(𝑤𝑒𝑖𝑔ℎ𝑡, 1; 𝑈) = 1.536413

38

 𝐸(𝑤𝑒𝑖𝑔ℎ𝑡, 1.6, 𝑈) = 0.9332607∗

Length: Potential cut-points = 0.3 →0.7← 1.1 →1.7← 2.3

 Conditional entropy,

 𝐸(𝑙𝑒𝑛𝑔𝑡ℎ, 0.7, 𝑈) = 9.895355

 𝐸(𝑙𝑒𝑛𝑔𝑡ℎ, 1.7, 𝑈) = 1.536413∗

Height: Potential cut-points = 7.2 →8.7← 10.2 →12.7← 15.2

 Conditional entropy,

 𝐸(ℎ𝑒𝑖𝑔ℎ𝑡, 8.7, 𝑈) = 1.264965∗

 𝐸(ℎ𝑒𝑖𝑔ℎ𝑡, 12.7, 𝑈) = 1.536413

Set of best cut-points:

 weight → 1.6

 length → 1.7

 height → 8.7

Discretized table

Table 11

CASE ATTRIBUTE DECISION

weight length height price

1 0.8..1.6 0.3..1.7 7.2..8.7 very small

2 0.8..1.6 0.3..1.7 7.2..8.7 small

3 0.8..1.6 0.3..1.7 8.7..15.2 medium

4 0.8..1.6 0.3..1.7 8.7..15.2 medium

5 0.8..1.6 1.7..2.3 8.7..15.2 medium

6 1.6..2.0 1.7..2.3 8.7..15.2 high

7 1.6..2.0 1.7..2.3 8.7..15.2 very high

39

For the discretized Table 11:

 {𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}}

 {𝐴𝐷}∗ = {{1, 2}, {3, 4}, {5}, {6, 7}}

B. Level of consistency, L(A) is defined as:

𝐿(𝐴) =
∑ |𝐴𝑋|𝑋∈{𝑑}∗

|𝑈|

Level of consistency is computed as:

𝐿(𝐴𝐷) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7

=
∅ + ∅ + |{3,4}, {5}| + ∅ + ∅

7

=
0 + 0 + 3 + 0 + 0

7

= 0.43

Since 𝐿(𝐴𝐷) < 1 and as we can see subsets {1, 2} and {6, 7} in Table 11 are inconsistent, we

rescan entire table to distinguish inconsistent subsets shown in Table 12 and Table 13.

Table 12

CASE ATTRIBUTE DECISION

weight length height price

1 0.8 0.3 7.2 very small

2 0.8 1.1 7.2 small

Table 13

CASE ATTRIBUTE DECISION

weight length height price

6 2.0 2.3 10.2 High

7 2.0 2.3 15.2 very high

40

Scan t = 2

A. Find best cut point for each attribute in Table 12

Weight: Potential cut-points = none

Length: Potential cut-points = 0.3 →0.7← 1.1. There is only one possible cut-point.

Height: Potential cut-points = none

Updated set of best cut-points:

 weight → 1.6

 length → 1.7, 0.7

 height → 8.7

Discretized table

Table 14. Discretized table

CASE ATTRIBUTE DECISION

weight length height price

1 0.8..1.6 0.3..0.7 7.2..8.7 very small

2 0.8..1.6 0.7..1.1 7.2..8.7 small

3 0.8..1.6 0.7..1.1 8.7..15.2 medium

4 0.8..1.6 0.3..0.7 8.7..15.2 medium

5 0.8..1.6 1.7..2.3 8.7..15.2 medium

6 1.6..2.0 1.7..2.3 8.7..15.2 high

7 1.6..2.0 1.7..2.3 8.7..15.2 very high

For the discretized Table 14:

 {𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}}

 {𝐴𝐷}∗ = {{1}, {2}, {3}, {4}, {5}, {6, 7}}

B. Level of consistency. 𝐿(𝐴𝐷) for Table 14 is computed as:

𝐿(𝐴𝐷) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7

41

=
|{1}| + |{2}| + |{3}, {4}, {5}| + ∅ + ∅

7

=
1 + 1 + 3 + 0 + 0

7

= 0.714

Since 𝐿(𝐴𝐷) < 1, rescan entire table to distinguish remaining inconsistent subsets, {6, 7}

Scan t = 3

A. Find best cut point for each attribute in Table 13

Weight: Potential cut-points = none

Length: Potential cut-points = none

Height: Potential cut-points = 10.2 →12.7← 15.2. There is only one possible cut-point.

Updated set of best cut-points

 weight → 1.6

 length → 1.7, 0.7

 height → 8.7, 12.7

Discretized table

Table 15. Discretization table

CASE ATTRIBUTE DECISION

weight length height price

1 0.8..1.6 0.3..0.7 7.2..8.7 very small

2 0.8..1.6 0.7..1.7 7.2..8.7 small

3 0.8..1.6 0.7..1.7 8.7..12.7 medium

4 0.8..1.6 0.3..0.7 8.7..12.7 medium

5 0.8..1.6 1.7..2.3 8.7..12.7 medium

6 1.6..2.0 1.7..2.3 8.7..12.7 high

7 1.6..2.0 1.7..2.3 12.7..15.2 very high

42

For the discretized Table 15:

 {𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}}

 {𝐴𝐷}∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}

B. Level of consistency, 𝑳(𝑨𝑫) is defined as:

𝐿(𝐴𝐷) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7

=
|{1}| + |{2}| + |{3}, {4}, {5}| + |{6}| + |{7}|

7

=
1 + 1 + 3 + 1 + 1

7

= 1

Since 𝐿(𝐴𝐷) = 1, we are done.

Post processing

A. Safe merging: For any attribute and for any two neighboring intervals 𝑖. . 𝑗 and 𝑗. . 𝑘 of the

same discretized attribute, if both intervals are labeled by the same decision value, both

intervals are merged, i.e., replaced by a new interval 𝑖. . 𝑘.

a. Weight: Neighboring intervals

 0.8..1.6 → very small

 small

 medium

 1.6..2.0 → high

 very high

 Two intervals are differently labeled. Thus, they cannot be merged.

43

b. Length: Neighboring intervals

 0.3..0.7 → very small

 medium

 0.7..1.7 → small

 medium

 1.7..2.3 → medium

 high

 very high

 All intervals are differently labeled. Thus, they cannot be merged.

c. Height: Neighboring intervals

 7.2..8.7 → very small

 small

 8.7..12.7 → medium

 high

 12.7..15.2 → very high

 All neighboring intervals are differently labeled. Thus, they cannot be merged.

B. Proper merging: For any attribute and for any two neighboring intervals 𝑖. . 𝑗 and 𝑗. . 𝑘 of the

same discretized attribute, if a result 𝑖. . 𝑘 of merging does not reduce the level of

consistency 𝐿(𝐴𝐷), where 𝐴𝐷 is the current set of discretized attributes, both intervals are

merged (replaced by a new interval 𝑖. . 𝑘).

For the discretized Table 15:

{𝑑}∗ = {{1}, {2}, {3, 4, 5}, {6}, {7}}

{𝐴}∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}

44

Therefore, level of consistency,

𝐿(𝐴) =
|𝐴{1}| + |𝐴{2}| + |𝐴{3,4,5}| + |𝐴{6}| + |𝐴{7}|

7

=
|{1}| + |{2}| + |{3}, {4}, {5}| + |{6}| + |{7}|

7

=
1 + 1 + 3 + 1 + 1

7

= 1

a. Weight: After merging 0.8..1.6 and 1.6..2.0

{𝐴}∗ = {{1}, {2}, {3}, {4}, {5, 6}, {7}}

And level of consistency,

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7

=
|{1}| + |{2}| + |{3}, {4}| + ∅ + |{7}|

7

=
1 + 1 + 2 + 0 + 1

7

= 0.714

Merging intervals lead to reduction in level of consistency. Thus, they cannot be merged.

b. Length: After merging 0.3..0.7 and 0.7..1.7

{𝐴}∗ = {{1, 2}, {3, 4}, {5}, {6}, {7}}

Therefore, new level of consistency,

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7

=
∅ + ∅ + |{3,4}, {5}| + |{6}| + |{7}|

7

45

=
3 + 1 + 1

7

= 0.714

Merging intervals lead to reduction in level of consistency. Thus, they cannot be merged.

After merging 0.7..1.7 and 1.7..2.3

{𝐴}∗ = {{1}, {2}, {3, 5}, {4}, {6}, {7}}

Level of consistency,

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7

=
|{1}| + |{2}| + |{3, 5}, {4}| + |{6}| + |{7}|

7

=
1 + 1 + 3 + 1 + 1

7

= 1

Merging of intervals did not lead to reduction in level of consistency. Thus, 0.7..1.7 and

1.7..2.3 can be merged together as 0.7..2.3. Discretization is updated in Table 16.

Table 16

CASE ATTRIBUTE DECISION

weight length height price

1 0.8..1.6 0.3..0.7 7.2..8.7 very small

2 0.8..1.6 0.7..2.3 7.2..8.7 small

3 0.8..1.6 0.7..2.3 8.7..12.7 medium

4 0.8..1.6 0.3..0.7 8.7..12.7 medium

5 0.8..1.6 0.7..2.3 8.7..12.7 medium

6 1.6..2.0 0.7..2.3 8.7..12.7 high

7 1.6..2.0 0.7..2.3 12.7..15.2 very high

46

c. Height:

After merging 7.2..8.7 and 8.7..12.7

{𝐴}∗ = {{1, 4}, {2, 3, 5}, {6}, {7}}

Therefore, new level of consistency,

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7

=
∅ + ∅ + ∅ + |{6}| + |{7}|

7

=
0 + 0 + 0 + 1 + 1

7

= 0.29

Merging intervals lead to reduction in level of consistency. Thus, they cannot be merged.

After merging 8.7..12.7 and 12.7..15.2

{𝐴}∗ = {{1}, {2}, {3, 5}, {4}, {6, 7}}

Therefore, new level of consistency,

𝐿(𝐵) =
|𝐵{1}| + |𝐵{2}| + |𝐵{3,4,5}| + |𝐵{6}| + |𝐵{7}|

7

=
|{1}| + |{2}| + |{3,5}, {4}| + ∅ + ∅

7

=
1 + 1 + 3

7

= 0.714

Merging intervals lead to reduction in level of consistency. Thus, they cannot be merged.

47

CHAPTER 6. RESULTS AND DISCUSSION

6.1. Discretization results

Summary of discretization by dominant attribute and multiple scanning approach is shown in

Table 17 - Table 33. Dominant attribute approach is shown with scan count, t = 0 whereas all

other experiments are conducted by using multiple scanning approach with respective scan

counts as shown. In general, multiple scanning approach is more conservative than dominant

attribute approach which is apparent from consistently fewer number of intervals produced by

the multiple scanning approach. Further, results indicate that rule sets produced by multiple

scanning approach are more compact i.e., total number of rules and conditions produced is lower

and the proportion of conditions per rule is higher. After few scans, variations with respect to

number of intervals stabilized and this stabilization was more prominent post-processing step of

interval merging was completed. For example, data sets m-bank, m-echo, m-globe, m-image, m-

iris, m-wine, price, table and trip had no variation from scan numbers 1, 6, 5, 7, 6, 1, 1, 1 and 1

respectively (Table 52).

Table 17. Summary of discretization for austr

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 162 11.57 48 3.43

1 54 3.86 36 2.57

2 60 4.29 35 2.5

3 65 4.64 34 2.43

4 69 4.93 35 2.5

5 74 5.29 35 2.5

6 79 5.64 35 2.5

7 83 5.93 35 2.5

8 86 6.14 37 2.64

9 90 6.43 37 2.64

10 97 6.93 36 2.57

48

Table 18. Summary of discretization for common_combined_lers

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 16326 1 16306 1

1 32523 2 16293 1

Table 19. Summary of discretization for m-bank

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 14 2.8 14 2.8

1 15 3 8 1.6

2 15 3 8 1.6

3 15 3 8 1.6

4 15 3 8 1.6

5 15 3 8 1.6

6 15 3 8 1.6

7 15 3 8 1.6

8 15 3 8 1.6

9 15 3 8 1.6

10 15 3 8 1.6

Table 20. Summary of discretization for m-echo

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 32 4.57 21 3

1 26 3.71 17 2.43

2 31 4.43 19 2.71

3 35 5 20 2.86

4 39 5.57 20 2.86

5 42 6 21 3

6 46 6.57 21 3

7 46 6.57 21 3

8 46 6.57 21 3

9 46 6.57 21 3

10 46 6.57 21 3

Table 21. Summary of discretization for m-glass

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 100 11.11 44 4.89

1 54 6 29 3.22

2 66 7.33 35 3.89

3 72 8 34 3.78

4 77 8.56 33 3.67

5 81 9 32 3.56

6 79 8.78 32 3.56

7 89 9.89 32 3.56

8 107 11.89 32 3.56

9 112 12.44 32 3.56

10 117 13 33 3.67

49

Table 22. Summary of discretization for m-globe

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 25 5 19 3.8

1 30 6 16 3.2

2 26 5.2 15 3

3 33 6.6 16 3.2

4 39 7.8 16 3.2

5 42 8.4 16 3.2

6 42 8.4 16 3.2

7 42 8.4 16 3.2

8 42 8.4 16 3.2

9 42 8.4 16 3.2

10 42 8.4 16 3.2

Table 23. Summary of discretization for m-image

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 86 4.53 47 2.47

1 63 3.32 38 2

2 78 4.11 33 1.74

3 91 4.79 36 1.89

4 106 5.58 40 2.11

5 120 6.32 39 2.05

6 131 6.89 41 2.16

7 140 7.37 43 2.26

8 140 7.37 43 2.26

9 140 7.37 43 2.26

10 140 7.37 43 2.26

Table 24. Summary of discretization for m-iris

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 15 3.75 11 2.75

1 21 5.25 11 2.75

2 21 5.25 10 2.5

3 23 5.75 11 2.75

4 25 6.25 11 2.75

5 27 6.75 11 2.75

6 28 7 11 2.75

7 28 7 11 2.75

8 28 7 11 2.75

9 28 7 11 2.75

10 28 7 11 2.75

50

Table 25. Summary of discretization for m-wine

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 29 2.23 25 1.92

1 26 2 21 1.62

2 26 2 21 1.62

3 26 2 21 1.62

4 26 2 21 1.62

5 26 2 21 1.62

6 26 2 21 1.62

7 26 2 21 1.62

8 26 2 21 1.62

9 26 2 21 1.62

10 26 2 21 1.62

Table 26. Summary of discretization for n-abalone

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 1166 145.75 319 39.88

1 1130 141.25 320 40

2 1129 141.13 324 40.5

3 1144 143 321 40.13

4 1147 143.38 317 39.63

5 1169 146.13 316 39.5

6 1177 147.13 309 38.63

7 1198 149.75 312 39

8 1217 152.13 310 38.75

9 1238 154.75 314 39.25

10 1252 156.5 318 39.75

Table 27. Summary of discretization for n-bupa

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 83 13.83 35 5.83

1 86 14.33 32 5.33

2 87 14.5 34 5.67

3 90 15 38 6.33

4 88 14.67 38 6.33

5 88 14.67 38 6.33

6 91 15.17 34 5.67

7 95 15.83 35 5.83

8 101 16.83 36 6

9 106 17.67 38 6.33

10 107 17.83 36 6

51

Table 28. Summary of discretization for n-eoli

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 65 9.29 34 4.86

1 58 8.29 34 4.86

2 64 9.14 33 4.71

3 72 10.29 32 4.57

4 78 11.14 34 4.86

5 80 11.43 34 4.86

6 85 12.14 34 4.86

7 90 12.86 35 5

8 97 13.86 36 5.14

9 99 14.14 36 5.14

10 106 15.14 36 5.14

Table 29. Summary of discretization for n-pima

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 148 18.5 41 5.13

1 108 13.5 42 5.25

2 112 14 41 5.13

3 118 14.75 42 5.25

4 121 15.13 43 5.38

5 126 15.75 40 5

6 129 16.13 43 5.38

7 132 16.5 43 5.38

8 143 17.88 44 5.5

9 148 18.5 44 5.5

10 154 19.25 45 5.63

Table 30. Summary of discretization for n-wave-512

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 174 8.29 59 2.81

1 85 4.05 45 2.14

2 105 5 43 2.05

3 124 5.9 43 2.05

4 142 6.76 43 2.05

5 161 7.67 43 2.05

6 177 8.43 45 2.14

7 197 9.38 46 2.19

8 212 10.1 48 2.29

9 231 11 47 2.24

10 250 11.9 47 2.24

52

Table 31. Summary of discretization for price

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 7 2.33 7 2.33

1 8 2.67 7 2.33

2 8 2.67 7 2.33

3 8 2.67 7 2.33

4 8 2.67 7 2.33

5 8 2.67 7 2.33

6 8 2.67 7 2.33

7 8 2.67 7 2.33

8 8 2.67 7 2.33

9 8 2.67 7 2.33

10 8 2.67 7 2.33

Table 32. Summary of discretization for table

Scans Before interval merging After interval merging

 # intervals # intervals/attribute # intervals # intervals/attribute

0 7 2.33 7 2.33

1 8 2.67 7 2.33

2 8 2.67 7 2.33

3 8 2.67 7 2.33

4 8 2.67 7 2.33

5 8 2.67 7 2.33

6 8 2.67 7 2.33

7 8 2.67 7 2.33

8 8 2.67 7 2.33

9 8 2.67 7 2.33

10 8 2.67 7 2.33

Table 33. Summary of discretization for trip

Scans

Before interval merging After interval merging

intervals # intervals/attribute # intervals # intervals/attribute

0 9 3 8 2.67

1 10 3.33 8 2.67

2 10 3.33 8 2.67

3 10 3.33 8 2.67

4 10 3.33 8 2.67

5 10 3.33 8 2.67

6 10 3.33 8 2.67

7 10 3.33 8 2.67

8 10 3.33 8 2.67

9 10 3.33 8 2.67

10 10 3.33 8 2.67

53

Table 34 shows percent reduction in interval counts after merging operations. Results indicate

that, on average, multiple scanning approach produces comparatively excessive intervals which

is associated with high reduction rate during merging process. Although both discretization

approaches are global, dominant attribute approach is less global in a sense that it focuses on

only one attribute (dominant) and selects one cut-point on every iteration for splitting data set.

On the other hand, multiple scanning approach selects as many cut-points as the number of

attributes in each iteration and hence a more global approach.

Table 34.Percent reduction in interval counts after preprocessing

Data % Reduction after interval merging

Dominant attribute

approach

Multiple Scanning

Approach (Average)

austr 70.37 51.70

common_combined_lers 0.12 49.90

m-bank 0.00 46.67

m-echo 34.38 48.66

m-glass 56.00 60.05

m-globe 24.00 57.09

m-image 45.35 63.34

m-iris 26.67 57.10

m-wine 13.79 19.23

n-abalone 72.64 73.17

n-bupa 57.83 61.58

n-ecoli 47.69 57.30

n-pima 72. 30 66.60

n-wave-512 66.09 70.39

price 0.00 12.50

table 0.00 12.50

trip 11.11 20.00

54

6.2. Discretization results of bankruptcy data

6.2.1. Dominant attribute approach

The approach tends to confine discriminating features to dominant attributes only. Figure 4 -

Figure 8 shows that the algorithm has repeatedly found attribute a1 as most informative and

therefore this attribute was overly discretized into large number of intervals. Overall, there

were 14 intervals defined for the entire data set but as many as 9 intervals were confined to

dominant attributes, a1. It took 14 rules to explain all patterns in the data set.

Figure 4. DM: Interval distribution for attribute, a1

55

Figure 5. DM: Interval distribution for attribute, a2

56

Figure 6. DM: Interval distribution for attribute, a3

57

Figure 7. DM: Interval distribution for attribute, a4

58

Figure 8. DM: Interval distribution for attribute, a5

59

6.2.2. Multiple scanning approach (10 scans)

This approach tends to distribute discriminating features evenly across all attributes and

explains patterns with comparatively much less number of rules. Results in Figure 9 - Figure

13 show that the approach has discretized dataset into 8 intervals, 6 of them are

discriminating and spread across 3 attributes. Entire data set was explained with just 4 rules.

Figure 9. MS: Interval distribution for attribute, a1

60

Figure 10. MS: Interval distribution for attribute, a2

61

Figure 11. MS: Interval distribution for attribute, a3

62

Figure 12. MS: Interval distribution for attribute, a4

63

Figure 13. MS: Interval distribution for attribute, a5

64

6.3. LEM2 induced rules

Table 35 - Table 51 shows the general trend that the rule set derived from data set discretized by

dominant attribute approach contains more number of rules and conditions as compared to

multiple scanning approach.

Table 35. LEM2 induced rules for austr

Scans Rules Conditions Conditions/rule

0 174 563 3.2356

1 99 489 4.9394

2 116 539 4.6466

3 127 561 4.4173

4 123 577 4.6911

5 124 581 4.6855

6 121 544 4.4959

7 127 570 4.4882

8 126 542 4.3016

9 125 528 4.224

10 125 535 4.28

Table 36. LEM2 induced rules for common_combined_lers

Scans Rules Conditions Conditions/Rule

0 67 67 1

1 67 67 1

Table 37. LEM2 induced rules for m-bank

Scans Rules Conditions Conditions/Rule

0 10 14 1.4

1 4 7 1.75

2 4 7 1.75

3 4 7 1.75

4 4 7 1.75

5 4 7 1.75

6 4 7 1.75

7 4 7 1.75

8 4 7 1.75

9 4 7 1.75

10 4 7 1.75

65

Table 38. LEM2 induced rules for m-echo

Scans Rules Conditions Conditions/rule

0 31 72 2.3226

1 24 64 2.6667

2 23 65 2.8261

3 29 80 2.7586

4 28 77 2.75

5 25 68 2.72

6 25 68 2.72

7 25 68 2.72

8 25 68 2.72

9 25 68 2.72

10 25 68 2.72

Table 39. LEM2 induced rules for m-glass

Scans Rules Conditions Conditions/rule

0 98 225 2.2959

1 64 223 3.4844

2 75 252 3.36

3 80 271 3.3875

4 76 264 3.4737

5 77 271 3.5195

6 70 238 3.4

7 69 244 3.5362

8 81 278 3.4321

9 80 274 3.425

10 83 268 3.2289

Table 40. LEM2 induced rules for m-globe

Scans Rules Conditions Conditions/rule

0 27 57 2.1111

1 24 57 2.375

2 22 56 2.5455

3 22 53 2.4091

4 20 46 2.3

5 20 46 2.3

6 20 46 2.3

7 20 46 2.3

8 20 46 2.3

9 20 46 2.3

10 20 46 2.3

66

Table 41. LEM2 induced rules for m-image

Scans Rules Conditions Conditions/rule

0 57 64 1.1228

1 64 87 1.3594

2 51 59 1.1569

3 55 71 1.2909

4 62 77 1.2419

5 59 67 1.1356

6 57 65 1.1404

7 58 64 1.1034

8 58 64 1.1034

9 58 64 1.1034

10 58 64 1.1034

Table 42. LEM2 induced rules for m-iris

Scans Rules Conditions Conditions/rule

0 10 23 2.3

1 11 23 2.0909

2 10 21 2.1

3 10 22 2.2

4 10 22 2.2

5 10 22 2.2

6 10 20 2

7 10 20 2

8 10 20 2

9 10 20 2

10 10 20 2

Table 43. LEM2 induced rules for m-wine

Scans Rules Conditions Conditions/rule

0 24 57 2.375

1 11 37 3.3636

2 11 37 3.3636

3 11 37 3.3636

4 11 37 3.3636

5 11 37 3.3636

6 11 37 3.3636

7 11 37 3.3636

8 11 37 3.3636

9 11 37 3.3636

10 11 37 3.3636

67

Table 44. LEM2 induced rules for n-abalone

Scans Rules Conditions Conditions/rule

0 3135 10624 3.3888

1 3161 10551 3.3379

2 3184 10607 3.3313

3 3178 10593 3.3332

4 3163 10589 3.3478

5 3146 10527 3.3462

6 3152 10574 3.3547

7 3157 10537 3.3377

8 3147 10522 3.3435

9 3161 10539 3.3341

10 3155 10508 3.3306

Table 45. LEM2 induced rules for n-bupa

Scans Rules Conditions Conditions/rule

0 154 465 3.0195

1 11 37 3.3636

2 150 476 3.1733

3 159 479 3.0126

4 145 435 3

5 154 455 2.9545

6 143 433 3.028

7 153 453 2.9608

8 151 453 3

9 162 485 2.9938

10 146 443 3.0342

Table 46. LEM2 induced rules for n-ecoli

Scans Rules Conditions Conditions/rule

0 99 266 2.6869

1 103 284 2.7573

2 113 322 2.8496

3 111 319 2.8739

4 113 320 2.8319

5 111 308 2.7748

6 116 316 2.7241

7 108 299 2.7685

8 114 329 2.886

9 113 319 2.823

10 114 319 2.7982

68

Table 47. LEM2 induced rules for b-pima

Scans Rules Conditions Conditions/rule

0 285 958 3.3614

1 256 952 3.7188

2 263 933 3.5475

3 272 988 3.6324

4 275 993 3.6109

5 256 930 3.6328

6 256 904 3.5312

7 270 965 3.5741

8 263 939 3.5703

9 263 939 3.5703

10 264 932 3.5303

Table 48. LEM2 induced rules for n-wave-512

Scans Rules Conditions Conditions/rule

0 182 667 3.6648

1 104 559 5.375

2 105 510 4.8571

3 107 512 4.785

4 129 549 4.2558

5 120 525 4.375

6 118 526 4.4576

7 179 771 4.3073

8 172 746 4.3372

9 169 722 4.2722

10 171 768 4.4912

Table 49. LEM2 induced rules for price

Scans Rules Conditions Conditions/rule

0 5 9 1.8

1 5 9 1.8

2 5 9 1.8

3 5 9 1.8

4 5 9 1.8

5 5 9 1.8

6 5 9 1.8

7 5 9 1.8

8 5 9 1.8

9 5 9 1.8

10 5 9 1.8

69

Table 50. LEM2 induced rules for table

Scans Rules Conditions Conditions/rule

0 5 9 1.8

1 5 9 1.8

2 5 9 1.8

3 5 9 1.8

4 5 9 1.8

5 5 9 1.8

6 5 9 1.8

7 5 9 1.8

8 5 9 1.8

9 5 9 1.8

10 5 9 1.8

Table 51. LEM2 induced rules for trip

Scans Rules Conditions Conditions/rule

0 8 15 1.875

1 7 12 1.7143

2 7 12 1.7143

3 7 12 1.7143

4 7 12 1.7143

5 7 12 1.7143

6 7 12 1.7143

7 7 12 1.7143

8 7 12 1.7143

9 7 12 1.7143

10 7 12 1.7143

70

CHAPTER 7. CONCLUSIONS

Preliminary results presented in this study are consistent with earlier studies [5, 6], which

indicate that multiple scanning approach performs better than dominant attribute approach by

producing comparatively smaller and simpler rule sets. It was consistently observed from the

results of multiple scanning approach that after scanning dataset for few iterations, variations

with respect to number of intervals produced dampened significantly. Table 52 shows that after

certain number of scans, further scanning did not affect outcome with respect to the number of

intervals produced and the number of rules induced.

Table 52. Variation dampening effect with MSA

Data # scans # intervals

before merging

intervals

after merging

LEM2 rules

rules # conditions

m-bank 1 - 10 15 8 4 7

m-echo 6 - 10 46 21 25 68

m-globe 5 - 10 42 16 20 46

m-image 7 - 10 140 43 58 64

m-iris 6 - 10 28 11 10 20

m-wine 1 - 10 26 21 11 37

price 1 - 10 8 7 5 9

table 1 - 10 8 7 5 9

trip 1 - 10 10 8 7 12

Further, number of intervals after merging operation consistently showed greater stabilization

than those before merging operation. However, claim should be validated with more elaborate

experiments and statistical tests. The two approaches presented here affirms the promise of

entropy based approaches in discretization which clearly has a scope for further improvement.

Besides incorporating novel ideas such as integrating discretization with merging procedures,

immediate improvements can be achieved by implementing more efficient algorithms. The

current implementation works well for moderately sized dataset but failed to produce result in a

reasonable amount of time for bigger sized data set. Expense of time complexity becomes

71

obvious with increasing input size and as an example, among the studied datasets,

common_combined_lers with 68 cases and 16280 attributes was too prohibitive to permit us

from repeating experiments beyond one scan. The complex and recursive nature of algorithm can

be restrictive but not prohibitive towards better implementation. We are hoping to ameliorated

cost by implementing efficient program with more sophisticated data-structures and switching to

platform-dependent programming language such as C++.

72

APPENDICES

Following source files are included as an attachments

Java source code

 DomAttrApp.java - Dominant attribute approach.

 MultScanApp.java - Multiple scanning approach.

R source code

 rough-set.R - Figure 1. Rough sets.

 barplot.R - Figure 2. Probability distribution.

 interval-count-da.R - Figure 4 - Figure 8. Interval distributions with dominant attribute

approach.

 interval-count-ms.R - Figure 9 - Figure 13. Interval distributions with multiple scanning

approach

73

REFERENCES

1. Russell, S.J. and P. Norvig, Artificial intelligence : a modern approach. 3rd ed. Prentice Hall series in

artificial intelligence. 2010, Upper Saddle River, N.J.: Prentice Hall. xviii, 1132 p.

2. Carbonell, J.G., R.S. Michalski, and T.M. Mitchell, An overview of machine learning, in Machine

learning : an artificial intelligence approach, R.S. Michalski, J.G. Carbonell, and T.M. Mitchell,

Editors. 1983, Morgan Kaufmann: Los Altos, Calif. p. 3-23.

3. Witten, I.H., E. Frank, and M.A. Hall, Preface, in Data mining : practical machine learning tools and

techniques. 2011, Morgan Kaufmann: Burlington, MA. p. xxi-xxiv.

4. Grzymala-Busse, J.W., Introduction, in Managing uncertainty in expert systems. 1991, Kluwer

Academic: Boston. p. xix, 224 p.

5. Grzymala-Busse, J.W. A multiple scanning strategy for entropy based discretization. in Proceedings

of the 18-th International Symposium on Methodologies for Intelligent Systems, ISMIS 2009. 2009.

Prague, Czech Republic: Springer-Verlag Berlin Heidelberg 2009.

6. Grzymala-Busse, J.W., Discretization based on entropy and multiple scanning. Entropy, 2013. 15(5):

p. 1486-1502.

7. Weisberg, S., Scatterplots and Regression, in Applied linear regression. 2014, Wiley-Blackwell. p. 1.

8. Maimon, O. and L. Rokach, Introduction to Knowledge Discovery and Data Mining, in Data mining

and knowledge discovery handbook, O. Maimon and L. Rokach, Editors. 2010, Springer: Boston,

MA. p. 1-15.

9. Pawlak, Z., Rough sets. International Journal of Computer & Information Sciences, 1982. 11(5): p.

341-356.

10. Grzymala-Busse, J.W., Rule Induction, in Data mining and knowledge discovery handbook, O.

Maimon and L. Rokach, Editors. 2010, Springer. p. 249-265.

11. Grzymala-Busse, J., LERS—A Data Mining System, in Data Mining and Knowledge Discovery

Handbook, O. Maimon and L. Rokach, Editors. 2005, Springer US. p. 1347-1351.

12. Grzymala-Busse, J.W., Rule induction from rough approximations.

13. Grzymala-Busse, J.W., A new version of the rule induction system LERS. Fundam. Inf., 1997. 31(1):

p. 27-39.

14. Ott, L. and M. Longnecker, Probability and probability distributions, in A first course in statistical

methods. 2004, Thomson-Brooks/Cole: Belmont, CA. p. 109-172.

15. Cover, T.M. and J.A. Thomas, Introduction and preview, in Elements of information theory. 2006,

Wiley-Interscience: Hoboken, N.J. p. 1-12.

16. Shannon, C.E., A mathematical theory of communication. The Bell System Technical Journal, 1948.

27(3): p. 379–423.

74

17. Blajdo, P., et al. A comparison of six approaches to discretization - A rough set perspective. in

Proceedings of the Rough Sets and Knowledge Technology, RSKT'2008 Conference. 2008. Chengdu,

China: Springer Verlag.

18. Chmielewski, M.R. and J.W. Grzymala-Busse. Global discretization of continuous attributes as

preprocessing for machine learning. in Proceedings of the 3-rd International Workshop on Rough

Sets and Soft Computing. 1994. San Jose, CA.

19. Yang, Y., G.I. Webb, and X. Wu, Discretization methods, in Data mining and knowledge discovery

handbook, O. Maimon and L. Rokach, Editors. 2010, Springer. p. 101-116.

20. Sturges, H.A., The choice of a class interval. Journal of the American Statistical Association, 1926.

21(153): p. 65-66.

21. Fayyad, U.M. and K.B. Irani. Multi-interval discretization of continuous-valued attributes for

classification learning. in Proceedings of the 13th International Joint Conference on Artificial

Intelligence. 1993. Chambéry, France: Morgan Kaufmann 1993 ISBN 1-55860-300-X.

22. Quinlan, J.R. and R.R. L., Inferring decision trees using the minimum description length principle.

Information and computation, 1989. 80: p. 227-248.

23. Schildt, H., D. Coward, and Books24x7 Inc., History and evolution of Java, in Java the complete

reference, eighth edition. 2011, McGraw-Hill,: New York. p. 3-16.

24. Team, R.C., R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria. , 2014.

25. Weiss, M.A., Algorithm analysis, in Data structures and algorithm analysis in C++. 2006, Pearson

Addison-Wesley: Boston. p. 63-89.

26. Schildt, H., D. Coward, and Books24x7 Inc., Java util Part 1: The Collections Framework, in Java

the complete reference, eighth edition. 2011, McGraw-Hill,: New York. p. 453-524.

27. Shaffer, C.A. and C.A. Shaffer, Data structures & algorithm analysis in Java. 3rd ed. 2011, Mineola,

N.Y.: Dover Publications. xix, 582 p.

28. Bache, K. and M. Lichman, UCI Machine Learning Repository. 2013, University of California,

School of Information and Computer Science.: Irvine, CA.

29. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): p. 834-

8.

30. Altman, E.I., Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The

Journal of FINANCE, 1968. 23(4): p. 589-609.

