329 research outputs found

    Conceptual mechanization studies for a horizon definition spacecraft attitude control subsystem, phase A, part II, 10 October 1966 - 29 May 1967

    Get PDF
    Attitude control subsystem for spin stabilized spacecraft for mapping earths infrared horizon radiance profiles in 15 micron carbon dioxide absorption ban

    A Dense Packing of Regular Tetrahedra

    Full text link
    We construct a dense packing of regular tetrahedra, with packing density D>>.7786157D > >.7786157.Comment: full color versio

    Photonic quasicrystals for general purpose nonlinear optical frequency conversion

    Full text link
    We present a general method for the design of 2-dimensional nonlinear photonic quasicrystals that can be utilized for the simultaneous phase-matching of arbitrary optical frequency-conversion processes. The proposed scheme--based on the generalized dual-grid method that is used for constructing tiling models of quasicrystals--gives complete design flexibility, removing any constraints imposed by previous approaches. As an example we demonstrate the design of a color fan--a nonlinear photonic quasicrystal whose input is a single wave at frequency ω\omega and whose output consists of the second, third, and fourth harmonics of ω\omega, each in a different spatial direction

    Quasi Regular Polyhedra and Their Duals with Coxeter Symmetries Represented by Quaternions I

    Full text link
    In two series of papers we construct quasi regular polyhedra and their duals which are similar to the Catalan solids. The group elements as well as the vertices of the polyhedra are represented in terms of quaternions. In the present paper we discuss the quasi regular polygons (isogonal and isotoxal polygons) using 2D Coxeter diagrams. In particular, we discuss the isogonal hexagons, octagons and decagons derived from 2D Coxeter diagrams and obtain aperiodic tilings of the plane with the isogonal polygons along with the regular polygons. We point out that one type of aperiodic tiling of the plane with regular and isogonal hexagons may represent a state of graphene where one carbon atom is bound to three neighboring carbons with two single bonds and one double bond. We also show how the plane can be tiled with two tiles; one of them is the isotoxal polygon, dual of the isogonal polygon. A general method is employed for the constructions of the quasi regular prisms and their duals in 3D dimensions with the use of 3D Coxeter diagrams.Comment: 22 pages, 16 figure

    Generalized Riemann sums

    Full text link
    The primary aim of this chapter is, commemorating the 150th anniversary of Riemann's death, to explain how the idea of {\it Riemann sum} is linked to other branches of mathematics. The materials I treat are more or less classical and elementary, thus available to the "common mathematician in the streets." However one may still see here interesting inter-connection and cohesiveness in mathematics

    Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons

    Full text link
    We present a unified approach for qualitative and quantitative analysis of stability and instability dynamics of positive bright solitons in multi-dimensional focusing nonlinear media with a potential (lattice), which can be periodic, periodic with defects, quasiperiodic, single waveguide, etc. We show that when the soliton is unstable, the type of instability dynamic that develops depends on which of two stability conditions is violated. Specifically, violation of the slope condition leads to an amplitude instability, whereas violation of the spectral condition leads to a drift instability. We also present a quantitative approach that allows to predict the stability and instability strength

    Modelling quasicrystals at positive temperature

    Full text link
    We consider a two-dimensional lattice model of equilibrium statistical mechanics, using nearest neighbor interactions based on the matching conditions for an aperiodic set of 16 Wang tiles. This model has uncountably many ground state configurations, all of which are nonperiodic. The question addressed in this paper is whether nonperiodicity persists at low but positive temperature. We present arguments, mostly numerical, that this is indeed the case. In particular, we define an appropriate order parameter, prove that it is identically zero at high temperatures, and show by Monte Carlo simulation that it is nonzero at low temperatures

    Bond percolation on isoradial graphs: criticality and universality

    Full text link
    In an investigation of percolation on isoradial graphs, we prove the criticality of canonical bond percolation on isoradial embeddings of planar graphs, thus extending celebrated earlier results for homogeneous and inhomogeneous square, triangular, and other lattices. This is achieved via the star-triangle transformation, by transporting the box-crossing property across the family of isoradial graphs. As a consequence, we obtain the universality of these models at the critical point, in the sense that the one-arm and 2j-alternating-arm critical exponents (and therefore also the connectivity and volume exponents) are constant across the family of such percolation processes. The isoradial graphs in question are those that satisfy certain weak conditions on their embedding and on their track system. This class of graphs includes, for example, isoradial embeddings of periodic graphs, and graphs derived from rhombic Penrose tilings.Comment: In v2: extended title, and small changes in the tex

    From conformal embeddings to quantum symmetries: an exceptional SU(4) example

    Full text link
    We briefly discuss several algebraic tools that are used to describe the quantum symmetries of Boundary Conformal Field Theories on a torus. The starting point is a fusion category, together with an action on another category described by a quantum graph. For known examples, the corresponding modular invariant partition function, which is sometimes associated with a conformal embedding, provides enough information to recover the whole structure. We illustrate these notions with the example of the conformal embedding of SU(4) at level 4 into Spin(15) at level 1, leading to the exceptional quantum graph E4(SU(4)).Comment: 22 pages, 3 color figures. Version 2: We changed the color of figures (ps files) in such a way that they are still understood when converted to gray levels. Version 3: Several references have been adde

    Geometrical isotropy in perforated plates with subwavelength holes decorated with Archimedean patterns

    Full text link
    The design and use of small apertures perforated in opaque plates to control the transmission of ultrasonic waves has been widely studied in recent years. The ultrasonic transmission response of brass plates perforated with Archimedean patterns of subwavelength hole arrays immersed in water is reported, both numerically and experimentally, in this work. It is shown that an increase in the geometrical isotropy of the elementary cells of the Archimedean patterns gives rise to a suppression of both minimum and maximum transmission corresponding to the destructive and constructive interferences, leading to uniformity within the angle-dependent transmitted sound power coefficient. The experimental results are in close agreement with the calculated ones. This property can be used to design ultrasonic devices such as filters and sensors.This work has been supported by the Spanish MICINN (MAT2010-16879) and Generalitat Valenciana (PROM-ETEOII/2014/026).Gómez Lozano, V.; Rubio Michavila, C.; Candelas Valiente, P.; Belmar Ibáñez, F.; Uris Martínez, A. (2015). Geometrical isotropy in perforated plates with subwavelength holes decorated with Archimedean patterns. EPL. 111(3):34002p1-34002p5. https://doi.org/10.1209/0295-5075/111/34002S34002p134002p5111
    • …
    corecore