329 research outputs found
Conceptual mechanization studies for a horizon definition spacecraft attitude control subsystem, phase A, part II, 10 October 1966 - 29 May 1967
Attitude control subsystem for spin stabilized spacecraft for mapping earths infrared horizon radiance profiles in 15 micron carbon dioxide absorption ban
A Dense Packing of Regular Tetrahedra
We construct a dense packing of regular tetrahedra, with packing density .Comment: full color versio
Photonic quasicrystals for general purpose nonlinear optical frequency conversion
We present a general method for the design of 2-dimensional nonlinear
photonic quasicrystals that can be utilized for the simultaneous phase-matching
of arbitrary optical frequency-conversion processes. The proposed scheme--based
on the generalized dual-grid method that is used for constructing tiling models
of quasicrystals--gives complete design flexibility, removing any constraints
imposed by previous approaches. As an example we demonstrate the design of a
color fan--a nonlinear photonic quasicrystal whose input is a single wave at
frequency and whose output consists of the second, third, and fourth
harmonics of , each in a different spatial direction
Quasi Regular Polyhedra and Their Duals with Coxeter Symmetries Represented by Quaternions I
In two series of papers we construct quasi regular polyhedra and their duals
which are similar to the Catalan solids. The group elements as well as the
vertices of the polyhedra are represented in terms of quaternions. In the
present paper we discuss the quasi regular polygons (isogonal and isotoxal
polygons) using 2D Coxeter diagrams. In particular, we discuss the isogonal
hexagons, octagons and decagons derived from 2D Coxeter diagrams and obtain
aperiodic tilings of the plane with the isogonal polygons along with the
regular polygons. We point out that one type of aperiodic tiling of the plane
with regular and isogonal hexagons may represent a state of graphene where one
carbon atom is bound to three neighboring carbons with two single bonds and one
double bond. We also show how the plane can be tiled with two tiles; one of
them is the isotoxal polygon, dual of the isogonal polygon. A general method is
employed for the constructions of the quasi regular prisms and their duals in
3D dimensions with the use of 3D Coxeter diagrams.Comment: 22 pages, 16 figure
Generalized Riemann sums
The primary aim of this chapter is, commemorating the 150th anniversary of
Riemann's death, to explain how the idea of {\it Riemann sum} is linked to
other branches of mathematics. The materials I treat are more or less classical
and elementary, thus available to the "common mathematician in the streets."
However one may still see here interesting inter-connection and cohesiveness in
mathematics
Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons
We present a unified approach for qualitative and quantitative analysis of
stability and instability dynamics of positive bright solitons in
multi-dimensional focusing nonlinear media with a potential (lattice), which
can be periodic, periodic with defects, quasiperiodic, single waveguide, etc.
We show that when the soliton is unstable, the type of instability dynamic that
develops depends on which of two stability conditions is violated.
Specifically, violation of the slope condition leads to an amplitude
instability, whereas violation of the spectral condition leads to a drift
instability. We also present a quantitative approach that allows to predict the
stability and instability strength
Modelling quasicrystals at positive temperature
We consider a two-dimensional lattice model of equilibrium statistical
mechanics, using nearest neighbor interactions based on the matching conditions
for an aperiodic set of 16 Wang tiles. This model has uncountably many ground
state configurations, all of which are nonperiodic. The question addressed in
this paper is whether nonperiodicity persists at low but positive temperature.
We present arguments, mostly numerical, that this is indeed the case. In
particular, we define an appropriate order parameter, prove that it is
identically zero at high temperatures, and show by Monte Carlo simulation that
it is nonzero at low temperatures
Bond percolation on isoradial graphs: criticality and universality
In an investigation of percolation on isoradial graphs, we prove the
criticality of canonical bond percolation on isoradial embeddings of planar
graphs, thus extending celebrated earlier results for homogeneous and
inhomogeneous square, triangular, and other lattices. This is achieved via the
star-triangle transformation, by transporting the box-crossing property across
the family of isoradial graphs. As a consequence, we obtain the universality of
these models at the critical point, in the sense that the one-arm and
2j-alternating-arm critical exponents (and therefore also the connectivity and
volume exponents) are constant across the family of such percolation processes.
The isoradial graphs in question are those that satisfy certain weak conditions
on their embedding and on their track system. This class of graphs includes,
for example, isoradial embeddings of periodic graphs, and graphs derived from
rhombic Penrose tilings.Comment: In v2: extended title, and small changes in the tex
From conformal embeddings to quantum symmetries: an exceptional SU(4) example
We briefly discuss several algebraic tools that are used to describe the
quantum symmetries of Boundary Conformal Field Theories on a torus. The
starting point is a fusion category, together with an action on another
category described by a quantum graph. For known examples, the corresponding
modular invariant partition function, which is sometimes associated with a
conformal embedding, provides enough information to recover the whole
structure. We illustrate these notions with the example of the conformal
embedding of SU(4) at level 4 into Spin(15) at level 1, leading to the
exceptional quantum graph E4(SU(4)).Comment: 22 pages, 3 color figures. Version 2: We changed the color of figures
(ps files) in such a way that they are still understood when converted to
gray levels. Version 3: Several references have been adde
Geometrical isotropy in perforated plates with subwavelength holes decorated with Archimedean patterns
The design and use of small apertures perforated in opaque plates to control the transmission of ultrasonic waves has been widely studied in recent years. The ultrasonic transmission response of brass plates perforated with Archimedean patterns of subwavelength hole arrays immersed in water is reported, both numerically and experimentally, in this work. It is shown that an increase in the geometrical isotropy of the elementary cells of the Archimedean patterns gives rise to a suppression of both minimum and maximum transmission corresponding to the destructive and constructive interferences, leading to uniformity within the angle-dependent transmitted sound power coefficient. The experimental results are in close agreement with the calculated ones. This property can be used to design ultrasonic devices such as filters and sensors.This work has been supported by the Spanish MICINN (MAT2010-16879) and Generalitat Valenciana (PROM-ETEOII/2014/026).GĂłmez Lozano, V.; Rubio Michavila, C.; Candelas Valiente, P.; Belmar Ibáñez, F.; Uris MartĂnez, A. (2015). Geometrical isotropy in perforated plates with subwavelength holes decorated with Archimedean patterns. EPL. 111(3):34002p1-34002p5. https://doi.org/10.1209/0295-5075/111/34002S34002p134002p5111
- …