1,593 research outputs found

    Gravity-wave spectra in the atmosphere observed by MST radar, part 4.2B

    Get PDF
    A universal spectrum of atmospheric buoyancy waves is proposed based on data from radiosonde, Doppler navigation, not-wire anemometer and Jimsphere balloon. The possible existence of such a universal spectrum clearly will have significant impact on several areas in the study of the middle atmosphere dynamics such as the parameterization of sub-grid scale gravity waves in global circulation models; the transport of trace constituents and heat in the middle atmosphere, etc. Therefore, it is important to examine more global wind data with temporal and spatial resolutions suitable for the investigation of the wave spectra. Mesosphere-stratosphere-troposphere (MST) radar observations offer an excellent opportunity for such studies. It is important to realize that radar measures the line-of-sight velocity which, in general, contains the combination of the vertical and horizontal components of the wave-associated particle velocity. Starting from a general oblique radar observation configuration, applying the dispersion relation for the gravity waves, the spectrum for the observed fluctuations in the line-of-sight gravity-wave spectrum is investigated through a filter function. The consequence of the filter function on data analysis is discussed

    First-principles, atomistic thermodynamics for oxidation catalysis

    Full text link
    Present knowledge of the function of materials is largely based on studies (experimental and theoretical) that are performed at low temperatures and ultra-low pressures. However, the majority of everyday applications, like e.g. catalysis, operate at atmospheric pressures and temperatures at or higher than 300 K. Here we employ ab initio, atomistic thermodynamics to construct a phase diagram of surface structures in the (T,p)-space from ultra-high vacuum to technically-relevant pressures and temperatures. We emphasize the value of such phase diagrams as well as the importance of the reaction kinetics that may be crucial e.g. close to phase boundaries.Comment: 4 pages including 2 figure files. Submitted to Phys. Rev. Lett. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Oor die metodiek van 'n holistiese geskiedenis van Oud-Israel

    Get PDF
    On the methodology of a holistic history of ancient IsraelIn this article certain issues relating to the concept ‘holistic historiography’ are clarified. Thereafter follows a reflection on methodology that would be appropriatefor holistic historiography, involving the critical use of biblical and extra-biblical sources, Syro-Palestinian archaeology, historical geography, sociology, psychologyand secondary literature

    Structure and stability of a high-coverage (1x1) oxygen phase on Ru(0001)

    Full text link
    The formation of chemisorbed O-phases on Ru(0001) by exposure to O_2 at low pressures is apparently limited to coverages Theta <= 0.5. Using low-energy electron diffraction and density functional theory we show that this restriction is caused by kinetic hindering and that a dense O overlayer (Theta = 1) can be formed with a (1x1) periodicity. The structural and energetic properties of this new adsorbate phase are analyzed and discussed in view of attempts to bridge the so-called "pressure gap" in heterogeneous catalysis. It is argued that the identified system actuates the unusually high rate of oxidizing reactions at Ru surfaces under high oxygen pressure conditions.Comment: RevTeX, 6 pages, 3 figures, to appear in Phys. Rev. Let

    Electronic properties of lanthanide oxides from the GW perspective

    No full text
    A first-principles understanding of the electronic properties of f -electron systems is currently regarded as a great challenge in condensed-matter physics because of the difficulty in treating both localized and itinerant states on the same footing by the current theoretical approaches, most notably density-functional theory (DFT) in the local-density or generalized gradient approximation (LDA/GGA). Lanthanide sesquioxides (Ln2O3) are typical f -electron systems for which the highly localized f states play an important role in determining their chemical and physical properties. In this paper, we present a systematic investigation of the performance of many-body perturbation theory in the GW approach for the electronic structure of the whole Ln2O3 series. To overcome the major failure of LDA/GGA, the traditional starting point for GW, for f -electron systems, we base our GW calculations on Hubbard U corrected LDA calculations (LDA+U). The influence of the crystal structure, the magnetic ordering, and the existence of metastable states on the electronic band structures are studied at both the LDA+U and the GW level. The evolution of the band structure with increasing number of f electrons is shown to be the origin for the characteristic structure of the band gap across the lanthanide sesquioxide series. A comparison is then made to dynamical mean-field theory (DMFT) combined with LDA or hybrid functionals to elucidate the pros and cons of these different approaches

    The steady-state of heterogeneous catalysis, studied by first-principles statistical mechanics

    Get PDF
    The turn-over frequency of the catalytic oxidation of CO at RuO2(110) was calculated as function of temperature and partial pressures using ab initio statistical mechanics. The underlying energetics of the gas-phase molecules, dissociation, adsorption, surface diffusion, surface chemical reactions, and desorption were obtained by all-electron density-functional theory. The resulting CO2 formation rate [in the full (T, p_CO, p_O2)-space], the movies displaying the atomic motion and reactions over times scales from picoseconds to seconds, and the statistical analyses provide insights into the concerted actions ruling heterogeneous catalysis and open thermodynamic systems in general.Comment: 4 pages including 3 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    The stability of vicinal surfaces and the equilibrium crystal shape of Pb by first principles theory

    Get PDF
    The orientation-dependent surface energies of fcc Pb for more than 30 vicinal orientations, distributed over the [110] and [001] zones of the stereographic triangle, have been studied by density-functional theory. For bulk-truncated structures almost all vicinal surfaces are found to be unstable and would facet into (111) and (100) orientations. However, after surface relaxation, all vicinal surfaces are stable relative to faceting into (111) and (100) orientations. There are also regions of relaxed vicinal surfaces which will facet into nearby stable vicinal surfaces. Overall, surface relaxation significantly affects the equilibrium crystal shape (ECS) of Pb. In both the [110] and [001] crystallographic zones the (110), (112), (221), and (023) facets are found on the ECS only after relaxation, in addition to (111) and (100). This result is in agreement with the experimental ECS of Pb at 353 K. Step formation energies for various vicinal orientations are estimated from facet diameters of the theoretical ECS and compared with experimental data
    • …
    corecore