121 research outputs found

    On the Cooling of the Neutron Star in Cassiopeia A

    Full text link
    We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained within the "nuclear medium cooling" scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. We also find that possibly in as little as about ten years of continued observation, the data may tell whether or not fast cooling processes are active in this neutron star.Comment: 4 pages, 3 figure

    Thermal Evolution of Neutron Stars in 2 Dimensions

    Full text link
    There are many factors that contribute to the breaking of the spherical symmetry of a neutron star. Most notably is rotation, magnetic fields, and/or accretion of matter from companion stars. All these phenomena influence the macroscopic structures of neutron stars, but also impact their microscopic compositions. The purpose of this paper is to investigate the cooling of rotationally deformed, two-dimensional (2D) neutron stars in the framework of general relativity theory, with the ultimate goal of better understand the impact of 2D effects on the thermal evolution of such objects. The equations that govern the thermal evolution of rotating neutron stars are presented in this paper. The cooling of neutron stars with different frequencies is computed self-consistently by combining a fully general relativistic 2D rotation code with a general relativistic 2D cooling code. We show that rotation can significantly influence the thermal evolution of rotating neutron stars. Among the major new aspects are the appearances of hot spots on the poles, and an increase of the thermal coupling times between the core and the crust of rotating neutron stars. We show that this increase is independent of the microscopic properties of the stellar core, but depends only on the frequency of the star.Comment: 8 pages, 6 figures, revised versio

    Timing evolution of accreting strange stars

    Get PDF
    It has been suggested that the QPO phenomenon in LMXB's could be explained when the central compact object is a strange star. In this work we investigate within a standard model for disk accretion whether the observed clustering of spin frequencies in a narrow band is in accordance with this hypothesis. We show that frequency clustering occurs for accreting strange stars when typical values of the parameters of magnetic field initial strength and decay time, accretion rate are chosen. In contrast to hybrid star accretion no mass clustering effect is found.Comment: 10 pages, 3 figures, version accepted for publication in New Astronom

    Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair

    Get PDF
    The extracellular matrix (ECM) is a key regulator of tissue morphogenesis and repair. However, its composition and architecture are not well characterized. Here, we monitor remodeling of the extracellular niche in tissue repair in the bleomycin-induced lung injury mouse model. Mass spectrometry quantified 8,366 proteins from total tissue and bronchoalveolar lavage fluid (BALF) over the course of 8 weeks, surveying tissue composition from the onset of inflammation and fibrosis to its full recovery. Combined analysis ofproteome, secretome, and transcriptome highlighted post-transcriptional events during tissue fibrogenesis and defined the composition of airway epithelial lining fluid. To comprehensively characterize the ECM, we developed a quantitative detergent solubility profiling (QDSP) method, which identified Emilin-2 and collagen-XXVIII as novel constituents of the provisional repair matrix. QDSP revealed which secreted proteins interact with the ECM, and showed drastically altered association of morphogens to the insoluble matrix upon injury. Thus, our proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti-fibrotic strategies

    How to identify a Strange Star

    Get PDF
    Contrary to young neutron stars, young strange stars are not subject to the r-mode instability which slows rapidly rotating, hot neutron stars to rotation periods near 10 ms via gravitational wave emission. Young millisecond pulsars are therefore likely to be strange stars rather than neutron stars, or at least to contain significant quantities of quark matter in the interior.Comment: 4 pages, 1 figur

    Intrinsic and extrinsic conduction contributions at nominally neutral domain walls in hexagonal manganites

    Full text link
    Conductive and electrostatic atomic force microscopy (cAFM and EFM) are used to investigate the electric conduction at nominally neutral domain walls in hexagonal manganites. The EFM measurements reveal a propensity of mobile charge carriers to accumulate at the nominally neutral domain walls in ErMnO3, which is corroborated by cAFM scans showing locally enhanced d.c. conductance. Our findings are explained based on established segregation enthalpy profiles for oxygen vacancies and interstitials, providing a microscopic model for previous, seemingly disconnected observations ranging from insulating to conducting domain wall behavior. In addition, we observe variations in conductance between different nominally neutral walls that we attribute to deviations from the ideal charge-neutral structure within the bulk, leading to a superposition of extrinsic and intrinsic contributions. Our study clarifies the complex transport properties at nominally neutral domain walls in hexagonal manganites and establishes new possibilities for tuning their electronic response based on oxidation conditions, opening the door for domain-wall based sensor technology.Comment: 5 pages, 3 figure

    Cooling of Neutron Stars: Two Types of Triplet Neutron Pairing

    Full text link
    We consider cooling of neutron stars (NSs) with superfluid cores composed of neutrons, protons, and electrons (assuming singlet-state pairing of protons, and triplet-state pairing of neutrons). We mainly focus on (nonstandard) triplet-state pairing of neutrons with the mJ=2|m_J| = 2 projection of the total angular momentum of Cooper pairs onto quantization axis. The specific feature of this pairing is that it leads to a power-law (nonexponential) reduction of the emissivity of the main neutrino processes by neutron superfluidity. For a wide range of neutron critical temperatures TcnT_{cn}, the cooling of NSs with the mJ=2|m_J| = 2 superfluidity is either the same as the cooling with the mJ=0m_J = 0 superfluidity, considered in the majority of papers, or much faster. The cooling of NSs with density dependent critical temperatures Tcn(ρ)T_{cn}(\rho) and Tcp(ρ)T_{cp}(\rho) can be imitated by the cooling of the NSs with some effective critical temperatures TcnT_{cn} and TcpT_{cp} constant over NS cores. The hypothesis of strong neutron superfluidity with mJ=2|m_J| = 2 is inconsistent with current observations of thermal emission from NSs, but the hypothesis of weak neutron superfluidity of any type does not contradict to observations.Comment: 10 pages, 6 figure

    S-wave Pairing of Λ\Lambda Hyperons in Dense Matter

    Full text link
    In this work we calculate the 1S0^1S_0 gap energies of Λ\Lambda hyperons in neutron star matter. The calculation is based on a solution of the BCS gap equation for an effective G-matrix parameterization of the ΛΛ\Lambda-\Lambda interaction with a nuclear matter background, presented recently by Lanskoy and Yamamoto. We find that a gap energy of a few tenths of MeV is expected for Λ\Lambda Fermi momenta up to about 1.3 fm1^{-1}. Implications for neutron star matter are examined, and suggest the existence of a Λ\Lambda 1S0^1S_0 superfluid between the threshold baryon density for Λ\Lambda formation and the baryon density where the Λ\Lambda fraction reaches 152015-20%.Comment: 16 pages, Revtex, 9 figures, 33 reference

    Possibility of \Lambda\Lambda pairing and its dependence on background density in relativistic Hartree-Bogoliubov model

    Full text link
    We calculate a \Lambda\Lambda pairing gap in binary mixed matter of nucleons and \Lambda hyperons within the relativistic Hartree-Bogoliubov model. Lambda hyperons to be paired up are immersed in background nucleons in a normal state. The gap is calculated with a one-boson-exchange interaction obtained from a relativistic Lagrangian. It is found that at background density \rho_{N}=2.5\rho_{0} the \Lambda\Lambda pairing gap is very small, and that denser background makes it rapidly suppressed. This result suggests a mechanism, specific to mixed matter dealt with relativistic models, of its dependence on the nucleon density. An effect of weaker \Lambda\Lambda attraction on the gap is also examined in connection with revised information of the \Lambda\Lambda interaction.Comment: 8 pages, 6 figures, REVTeX 4; substantially rewritten, emphasis is put on the LL pairing in pure neutron matte
    corecore