37,421 research outputs found
Field study on adaptive thermal comfort in typical air conditioned classrooms
This study investigates adaptive thermal comfort in air conditioned classrooms in Hong Kong. A field survey was conducted in several typical classrooms at the City University of Hong Kong. This survey covered objective measurement of thermal environment parameters and subjective human thermal responses. A total of 982 student volunteers participated in the investigation. The results indicate that students in light clothing (0.42 clo) have adapted to the cooler classroom environments. The neutral temperature is very close to the preferred temperature of approximately 24 °C. Based on the MTSV ranging between −0.5 and + 0.5, the comfort range is between 21.56 °C and 26.75 °C. The lower limit is below that of the ASHRAE standard. Of the predicted mean vote (PMV) and the University of California, Berkeley (UCB) model, the UCB model predictions agree better with the mean thermal sensation vote (MTSV). Also, the respective fit regression models of the MTSV versus each of the following: operative temperature (Top), PMV, and UCB were obtained. This study provides a better understanding of acceptable classroom temperatures
Anisotropic Optic Conductivities due to Spin and Orbital Orderings in LaVO3 and YVO3: First-Principles Studies
The anisotropy of low energy (05eV) optical excitations in strongly
correlated transition-metal oxides is closely related to the spin and orbital
orderings. The recent successes of LDA+ method in describing the magnetic
and electronic structures enable us to calculate the optical conductivity from
first-principles. The LaVO and YVO, both of which have
configuration and have various spin and orbital ordered phases at low
temperature, show distinct anisotropy in the optical spectra. The effects of
spin and orbital ordering on the anisotropy are studied in detail based on our
first-principles calculations. The experimental spectra of both compounds at
low temperature phases can be qualitatively explained with our calculations,
while the studies for the intermediate temperature phase of YVO suggest the
substantial persistence of the low temperature phase at elevated temperature.Comment: 6 pages, 3 figures, accepted by PR
Benchmark solutions of large-strain cavity contraction for deep tunnel convergence in geomaterials
To provide precise prediction of tunnelling-induced deformation of the surrounding geomaterials, a framework for derivation of rigorous large-strain solutions of unified spherical and cylindrical cavity contraction is presented for description of confinement-convergence responses for deep tunnels in geomaterials. Considering the tunnelling-induced large deformation, logarithmic strains are adopted for cavity contraction analyses in linearly elastic, non-associated Mohr–Coulomb, and brittle Hoek–Brown media. Compared with approximate solutions, the approximation error indicates the importance of release of small-strain restrictions for estimating tunnel convergence profiles, especially in terms of the scenarios with high stress condition and stiffness degradation under large deformation. The ground reaction curve is therefore predicted to describe the volume loss and stress relaxation around the tunnel walls. The stiffness of circular lining is calculated from the geometry and equivalent modulus of the supporting structure, and a lining installation factor is thus introduced to indicate the time of lining installation based on the prediction of spherical cavity contraction around the tunnel opening face. This study also provides a general approach for solutions using other sophisticated geomaterial models, and serves as benchmarks for analytical developments in consideration of nonlinear large-deformation behaviour and for numerical analyses of underground excavation
Classification of Overlapped Audio Events Based on AT, PLSA, and the Combination of Them
Audio event classification, as an important part of Computational Auditory Scene Analysis, has attracted much attention. Currently, the classification technology is mature enough to classify isolated audio events accurately, but for overlapped audio events, it performs much worse. While in real life, most audio documents would have certain percentage of overlaps, and so the overlap classification problem is an important part of audio classification. Nowadays, the work on overlapped audio event classification is still scarce, and most existing overlap classification systems can only recognize one audio event for an overlap. In this paper, in order to deal with overlaps, we innovatively introduce the author-topic (AT) model which was first proposed for text analysis into audio classification, and innovatively combine it with PLSA (Probabilistic Latent Semantic Analysis). We propose 4 systems, i.e. AT, PLSA, AT-PLSA and PLSA-AT, to classify overlaps. The 4 proposed systems have the ability to recognize two or more audio events for an overlap. The experimental results show that the 4 systems perform well in classifying overlapped audio events, whether it is the overlap in training set or the overlap out of training set. Also they perform well in classifying isolated audio events
A Dual-Consequent-Pole Vernier Memory Machine
This paper proposes a novel dual-consequent-pole Vernier memory machine (DCP-VMM)
featuring alternatively arranged NdFeB and low coercive-force (LCF) magnet poles on the rotating
and stationary sides, respectively. Due to the presence of LCF magnets that can be repetitively
magnetized or demagnetized via a simple current pulse, the extra-high torque density at low-speed,
and excellent high-efficient high-speed flux-weakening performance can be simultaneously realized.
The configuration and operating principle, as well as the design considerations of the proposed
machine are introduced, respectively. The finite element method (FEM) coupled with a nonlinear
analytical hysteresis model for LCF magnets is employed to investigate the electromagnetic
performance of the machine, which verifies the effectiveness of machine design and the feasibility as
a competent candidate for automotive applications
Search for D to phi l nu and measurement of the branching fraction for D to phi pi
Using a data sample of integrated luminosity of about 33 pb collected
around 3.773 GeV with the BESII detector at the BEPC collider, the semileptonic
decays , and the hadronic
decay are studied. The upper limits of the branching
fractions are set to be 2.01% and 2.04% at the 90% confidence level. The ratio of the
branching fractions for relative to is measured to be . In addition, the
branching fraction for is obtained to be .Comment: 6 pages, 5 figures, to be published in Eur.Phys.J.
- …