878 research outputs found

    Isogeometric analysis for functionally graded microplates based on modified couple stress theory

    Get PDF
    Analysis of static bending, free vibration and buckling behaviours of functionally graded microplates is investigated in this study. The main idea is to use the isogeometric analysis in associated with novel four-variable refined plate theory and quasi-3D theory. More importantly, the modified couple stress theory with only one material length scale parameter is employed to effectively capture the size-dependent effects within the microplates. Meanwhile, the quasi-3D theory which is constructed from a novel seventh-order shear deformation refined plate theory with four unknowns is able to consider both shear deformations and thickness stretching effect without requiring shear correction factors. The NURBS-based isogeometric analysis is integrated to exactly describe the geometry and approximately calculate the unknown fields with higher-order derivative and continuity requirements. The convergence and verification show the validity and efficiency of this proposed computational approach in comparison with those existing in the literature. It is further applied to study the static bending, free vibration and buckling responses of rectangular and circular functionally graded microplates with various types of boundary conditions. A number of investigations are also conducted to illustrate the effects of the material length scale, material index, and length-to-thickness ratios on the responses of the microplates.Comment: 57 pages, 14 figures, 18 table

    Mycobacterial CYP121 as a target for anti-TB drug discovery

    Get PDF
    Despite the introduction of the first line treatment regimen forty years ago and the continuous trials since that time to introduce new regimens, tuberculosis (TB) is considered to be the cause of considerable mortality worldwide. Recent research highlighted the Mycobacterium tuberculosis (Mtb)CYP450s as potential drug targets. This article reviews mycobacterial CYP121 as a target for anti-TB drug discovery

    Crystal structure of ethyl 4-amino-5-(5-methyl-1-(4-tolyl)-1H-1,2,3-triazole-4-carbonyl)-2-(phenylamino)thiophene-3-carboxylate, C24H23N5O3S

    Get PDF
    C24H23N5O3S, triclinic, P1̅ (no. 2), a = 9.1704(9) Å, b = 10.1253(11) Å, c = 12.2182(14) Å, α = 83.686(10)°, β = 89.542(9)°, γ = 76.982(9)°, V = 1098.5(2) Å3, Z = 2, Rgt(F) = 0.0551, wRref(F2) = 0.1510, T = 296(2) K

    Aliphatic polyketone-based thin film composite membrane with mussel-inspired polydopamine intermediate layer for high performance osmotic power generation

    Full text link
    Polydopamine (PDA), formed from self-polymerization of dopamine, was coated on aliphatic polyketone membrane substrate prior to interfacial polymerization (IP), preparing a pressure retarded osmosis (PRO) thin film composite (TFC) membrane with a PDA interlayer. The effect of the formation of two types of PDA interlayers — smooth and particulate — on substrate morphology, polyamide formation, and PRO osmotic performance were investigated. Also, the effect of pH on the particulate PDA interlayer was studied. It was found that the introduction of both smooth and particulate PDA contributes to enhanced water flux and power density of the PRO membranes. pH was found to have significantly affected the formation of particulate PDA and the polyamide formation, as well. At higher pH, PDA self-polymerization led to the formation of more nanoparticles, the subsequent increase in surface roughness and decline in the polyketone substrate porosity. The particulate PDA interlayer formed looser polyamide, compared to the thinner and denser polyamide formed on pristine and smooth PDA-interlayer-coated TFC membranes. The membrane performance was evaluated using deionized water and 1.0 M NaCl as feed and draw solutions, respectively. The TFC membrane with nanoparticulate PDA layer formed at pH 9.0 exhibited the best initial water flux of 40.8 L m−2 h−1, and this membrane also showed the highest power density of 17.1 W m−2 at 25 bar. The results of this study indicate that nanoparticulate PDA interlayer formation is a simple and scalable TFC membrane development method for engineered osmosis

    Mycobacterial CYP121 as a target for anti-TB drug discovery

    Get PDF
    Despite the introduction of the first line treatment regimen forty years ago and the continuous trials since that time to introduce new regimens, tuberculosis (TB) is considered to be the cause of considerable mortality worldwide. Recent research highlighted the Mycobacterium tuberculosis (Mtb)CYP450s as potential drug targets. This article reviews mycobacterial CYP121 as a target for anti-TB drug discovery
    • …
    corecore