6,142 research outputs found

    Interferometer Response to Geontropic Fluctuations

    Full text link
    We model vacuum fluctuations in quantum gravity with a scalar field, characterized by a high occupation number, coupled to the metric. The occupation number of the scalar is given by a thermal density matrix, whose form is motivated by fluctuations in the vacuum energy, which have been shown to be conformal near a light-sheet horizon. For the experimental measurement of interest in an interferometer, the size of the energy fluctuations is fixed by the area of a surface bounding the volume of spacetime being interrogated by an interferometer. We compute the interferometer response to these "geontropic" scalar-metric fluctuations, and apply our results to current and future interferometer measurements, such as LIGO and the proposed GQuEST experiment.Comment: 17 pages, 6 figure

    A library of infectious hepatitis C viruses with engineered mutations in the E2 gene reveals growth-adaptive mutations that modulate interactions with scavenger receptor class B type I

    Get PDF
    While natural hepatitis C virus (HCV) infection results in highly diverse quasispecies of related viruses over time, mutations accumulate more slowly in tissue culture, in part because of the inefficiency of replication in cells. To create a highly diverse population of HCV particles in cell culture and identify novel growth-enhancing mutations, we engineered a library of infectious HCV with all codons represented at most positions in the ectodomain of the E2 gene. We identified many putative growth-adaptive mutations and selected nine highly represented E2 mutants for further study: Q412R, T416R, S449P, T563V, A579R, L619T, V626S, K632T, and L644I. We evaluated these mutants for changes in particle-to-infectious-unit ratio, sensitivity to neutralizing antibody or CD81 large extracellular loop (CD81-LEL) inhibition, entry factor usage, and buoyant density profiles. Q412R, T416R, S449P, T563V, and L619T were neutralized more efficiently by anti-E2 antibodies and T416R, T563V, and L619T by CD81-LEL. Remarkably, all nine variants showed reduced dependence on scavenger receptor class B type I (SR-BI) for infection. This shift from SR-BI usage did not correlate with a change in the buoyant density profiles of the variants, suggesting an altered E2-SR-BI interaction rather than changes in the virus-associated lipoprotein-E2 interaction. Our results demonstrate that residues influencing SR-BI usage are distributed across E2 and support the development of large-scale mutagenesis studies to identify viral variants with unique functional properties. IMPORTANCE Characterizing variant viruses can reveal new information about the life cycle of HCV and the roles played by different viral genes. However, it is difficult to recapitulate high levels of diversity in the laboratory because of limitations in the HCV culture system. To overcome this limitation, we engineered a library of mutations into the E2 gene in the context of an infectious clone of the virus. We used this library of viruses to identify nine mutations that enhance the growth rate of HCV. These growth-enhancing mutations reduced the dependence on a key entry receptor, SR-BI. By generating a highly diverse library of infectious HCV, we mapped regions of the E2 protein that influence a key virus-host interaction and provide proof of principle for the generation of large-scale mutant libraries for the study of pathogens with great sequence variability

    Beamforming Design for the Performance Optimization of Intelligent Reflecting Surface Assisted Multicast MIMO Networks

    Get PDF
    In this paper, the problem of maximizing the sum of data rates of all users in an intelligent reflecting surface (IRS)-assisted millimeter wave multicast multiple-input multiple-output communication system is studied. In the considered model, one IRS is deployed to assist the communication from a multi-antenna base station (BS) to the multi-antenna users that are clustered into several groups. Our goal is to maximize the sum rate of all users by jointly optimizing the transmit beamforming matrices of the BS, the receive beamforming matrices of the users, and the phase shifts of the IRS. To solve this non-convex problem, we first use a block diagonalization method to represent the beamforming matrices of the BS and the users by the phase shifts of the IRS. Then, substituting the expressions of the beamforming matrices of the BS and the users, the original sum-rate maximization problem can be transformed into a problem that only needs to optimize the phase shifts of the IRS. To solve the transformed problem, a manifold method is used. Simulation results show that the proposed scheme can achieve up to 28.6% gain in terms of the sum rate of all users compared to the algorithm that optimizes the hybrid beamforming matrices of the BS and the users using our proposed scheme and randomly determines the phase shifts of the IRS

    Vehicle Communication using Secrecy Capacity

    Full text link
    We address secure vehicle communication using secrecy capacity. In particular, we research the relationship between secrecy capacity and various types of parameters that determine secrecy capacity in the vehicular wireless network. For example, we examine the relationship between vehicle speed and secrecy capacity, the relationship between the response time and secrecy capacity of an autonomous vehicle, and the relationship between transmission power and secrecy capacity. In particular, the autonomous vehicle has set the system modeling on the assumption that the speed of the vehicle is related to the safety distance. We propose new vehicle communication to maintain a certain level of secrecy capacity according to various parameters. As a result, we can expect safer communication security of autonomous vehicles in 5G communications.Comment: 17 Pages, 12 Figure

    Antiferromagnetic spin ladders effectively coupled by one-dimensional electron liquids

    Full text link
    We study a model of the stripe state in strongly correlated systems consisting of an array of antiferromagnetic spin ladders, each with nlegn_{leg} legs, coupled to each other through the spin-exchange interaction to charged stripes in between each pair of ladders. The charged stripes are assumed to be Luttinger liquids in a spin-gap regime (Luther-Emery). An effective interaction for a pair of neighboring ladders is calculated by integrating out the gapped spin degree of freedom in the charged stripe. The low energy effective theory of each ladder is the usual nonlinear σ\sigma-model with additional cross couplings of neighboring ladders. These interactions are found to favor either in-phase or anti-phase short range spin orderings depending on whether the charge stripe is site-centered or bond-centered as well as on its filling factor and other physical parameters of the charged stripe.Comment: 4 pages with 1 figure, revised introduction and discussion section

    Bottleneck effects in turbulence: Scaling phenomena in r- versus p-space

    Get PDF
    We (analytically) calculate the energy spectrum corresponding to various experimental and numerical turbulence data analyzed by Benzi et al.. We find two bottleneck phenomena: While the local scaling exponent ζr(r)\zeta_r(r) of the structure function decreases monotonically, the local scaling exponent ζp(p)\zeta_p(p) of the corresponding spectrum has a minimum of ζp(pmin)0.45\zeta_p(p_{min})\approx 0.45 at pmin(10η)1p_{min}\approx (10 \eta)^{-1} and a maximum of ζp(pmax)0.77\zeta_p(p_{max})\approx 0.77 at pmax8L1p_{max}\approx 8 L^{-1}. A physical argument starting from the constant energy flux in p--space reveals the general mechanism underlying the energy pileups at both ends of the p--space scaling range. In the case studied here, they are induced by viscous dissipation and the reduced spectral strength on the scale of the system size, respectively.Comment: 9 pages, 3figures on reques

    Dark-adapted red flash ERGs in healthy adults

    Get PDF
    Purpose: The x-wave of the dark-adapted (DA) ERG to a red flash reflects DA cone function. This exploratory study of healthy adults aimed to investigate changes in the DA red ERG with flash strength and during dark adaptation to optimise visualisation and therefore quantification of the x-wave. Methods: The effect of altering red flash strength was investigated in four subjects by recording ERGs after 20 minutes dark adaptation to red flashes (0.2–2.0 cd s m-2) using skin electrodes and natural pupils. The effect of dark adaptation duration was investigated in 16 subjects during 20 minutes in the dark, by recording DA 1.5 red ERGs at 1, 2, 3, 4, 5, 10, 15 and 20 minutes. Results: For a dark adaption period of 20 minutes, the x-wave was more clearly visualised to weaker (< 0.6 cd s m-2) red flash strengths: to stronger flashes it became obscured by the b-wave. For red flashes of 1.5 cd s m-2, the x-wave was most prominent in ERGs recorded after 1–5 minutes of dark adaptation: with longer dark-adaptation, it was subsumed into the b-wave’s rising edge. Conclusions: This small study suggests that x-wave visibility in healthy subjects after 20 minutes dark adaptation is improved by using flashes weaker than around 0.6 cd s m-2; for flash strengths of 1.5 cd s m-2, x-wave visibility is enhanced by recording after only around 5 minutes of dark adaptation. No evidence was found that interim red flash ERGs affecting the dark-adapted state of the normal retina

    Grid-enabled high throughput in-silico screening against influenza A neuraminidase

    Get PDF
    PCSV, présenté par H.-C. Lee, à paraître dans les proceedingsEncouraged by the success of first EGEE biomedical data challenge against malaria[1], the second data challenge was kicked off in April, 2006, fighting against avian flu. In the paper, we demonstrated how to adopt a world-wide deployed Grid infrastructure to efficiently produce a large scale virtual screening to speed up the drug design process. The 6-weeks activity of molecular docking on the Grid has covered over 100 years of computing power required for discovering new drug for avian flu. Around 600 Gigabytes of output has also been produced and archived on the Grid for further biological analysis and test
    corecore