811 research outputs found

    Probing the mass loss history of carbon stars using CO line and dust continuum emission

    Get PDF
    An extensive modelling of CO line emission from the circumstellar envelopes around a number of carbon stars is performed. By combining radio observations and infrared observations obtained by ISO the circumstellar envelope characteristics are probed over a large radial range. In the radiative transfer analysis the observational data are consistently reproduced assuming a spherically symmetric and smooth wind expanding at a constant velocity. The combined data set gives better determined envelope parameters, and puts constraints on the mass loss history of these carbon stars. The importance of dust in the excitation of CO is addressed using a radiative transfer analysis of the observed continuum emission, and it is found to have only minor effects on the derived line intensities. The analysis of the dust emission also puts further constraints on the mass loss rate history. The stars presented here are not likely to have experienced any drastic long-term mass loss rate modulations, at least less than a factor of about 5, over the past thousands of years. Only three, out of nine, carbon stars were observed long enough by ISO to allow a detection of CO far-infrared rotational lines.Comment: 11pages, 7 figures, accepted by A&

    Physical Characteristics of the Spectral States of Galactic Black Holes

    Get PDF
    Using simple analytical estimates we show how the physical parameters characterizing different spectral states of the galactic black hole candidates can be determined using spectral data presently available.Comment: 5 pages, 3 figures, to appear in the Proceedings of 4th Compton Symposium, April 27-30, 1997, Williamsburg, Virginia, US

    Abundances of disk and bulge giants from hi-res optical spectra: II. O, Mg, Ca, and Ti in the bulge sample

    Full text link
    Determining elemental abundances of bulge stars can, via chemical evolution modeling, help to understand the formation and evolution of the bulge. Recently there have been claims both for and against the bulge having a different [α\alpha/Fe] vs. [Fe/H]-trend as compared to the local thick disk possibly meaning a faster, or at least different, formation time scale of the bulge as compared to the local thick disk. We aim to determine the abundances of oxygen, magnesium, calcium, and titanium in a sample of 46 bulge K-giants, 35 of which have been analyzed for oxygen and magnesium in previous works, and compare them to homogeneously determined elemental abundances of a local disk sample of 291 K-giants. We use spectral synthesis to determine both the stellar parameters as well as the elemental abundances of the bulge stars analyzed here. The method is exactly the same as was used for analyzing the comparison sample of 291 local K-giants in Paper I of this series. Compared to the previous analysis of the 35 stars in our sample, we find lower [Mg/Fe] for [Fe/H]>-0.5, and therefore contradict the conclusion about a declining [O/Mg] for increasing [Fe/H]. We instead see a constant [O/Mg] over all the observed [Fe/H] in the bulge. Furthermore, we find no evidence for a different behavior of the alpha-iron trends in the bulge as compared to the local thick disk from our two samples.Comment: Accepted for publication in A&

    Modelling CO emission from Mira's wind

    Full text link
    We have modelled the circumstellar envelope of {\it o} Ceti (Mira) using new observational constraints. These are obtained from photospheric light scattered in near-IR vibrational-rotational lines of circumstellar CO molecules at 4.6 micron: absolute fluxes, the radial dependence of the scattered intensity, and two line ratios. Further observational constraints are provided by ISO observations of far-IR emission lines from highly excited rotational states of the ground vibrational state of CO, and radio observations of lines from rotational levels of low excitation of CO. A code based on the Monte-Carlo technique is used to model the circumstellar line emission. We find that it is possible to model the radio and ISO fluxes, as well as the highly asymmetric radio-line profiles, reasonably well with a spherically symmetric and smooth stellar wind model. However, it is not possible to reproduce the observed NIR line fluxes consistently with a `standard model' of the stellar wind. This is probably due to incorrectly specified conditions of the inner regions of the wind model, since the stellar flux needs to be larger than what is obtained from the standard model at the point of scattering, i.e., the intermediate regions at approximately 100-400 stellar radii (2"-7") away from the star. Thus, the optical depth in the vibrational-rotational lines from the star to the point of scattering has to be decreased. This can be accomplished in several ways. For instance, the gas close to the star (within approximately 2") could be in such a form that light is able to pass through, either due to the medium being clumpy or by the matter being in radial structures (which, further out, developes into more smooth or shell-like structures).Comment: 18 pages, 3 figures, accepted for publication in Ap

    Failed Gamma-Ray Bursts: Thermal UV/Soft X-ray Emission Accompanied by Peculiar Afterglows

    Full text link
    We show that the photospheres of "failed" Gamma-Ray Bursts (GRBs), whose bulk Lorentz factors are much lower than 100, can be outside of internal shocks. The resulting radiation from the photospheres is thermal and bright in UV/Soft X-ray band. The photospheric emission lasts for about one thousand seconds with luminosity about several times 10^46 erg/s. These events can be observed by current and future satellites. It is also shown that the afterglows of failed GRBs are peculiar at the early stage, which makes it possible to distinguish failed GRBs from ordinary GRBs and beaming-induced orphan afterglows.Comment: 19 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Fluorine in the solar neighborhood - is it all produced in AGB-stars?

    Full text link
    The origin of 'cosmic' fluorine is uncertain, but there are three proposed production sites/mechanisms: AGB stars, ν\nu nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well-determined stellar parameters. We use the 2.3 μ\mum vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μ\mum. The latter has never been used before for an abundance analysis. To be able to do this we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models only including fluorine production in AGB-stars and therefore we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μ\mum HF lines to determine the possible contribution of the ν\nu-process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic

    Evidence against anomalous compositions for giants in the Galactic Nuclear Star Cluster

    Get PDF
    Very strong Sc I lines have been found recently in cool M giants in the Nuclear Star Cluster in the Galactic Center. Interpreting these as anomalously high scandium abundances in the Galactic Center would imply a unique enhancement signature and chemical evolution history for nuclear star clusters, and a potential test for models of chemical enrichment in these objects. We present high resolution K-band spectra (NIRSPEC/Keck II) of cool M giants situated in the solar neighborhood and compare them with spectra of M giants in the Nuclear Star Cluster. We clearly identify strong Sc I lines in our solar neighborhood sample as well as in the Nuclear Star Cluster sample. The strong Sc I lines in M giants are therefore not unique to stars in the Nuclear Star Cluster and we argue that the strong lines are a property of the line formation process that currently escapes accurate theoretical modeling. We further conclude that for giant stars with effective temperatures below approximately 3800 K these Sc I lines should not be used for deriving the scandium abundances in any astrophysical environment until we better understand how these lines are formed. We also discuss the lines of vanadium, titanium, and yttrium identified in the spectra, which demonstrate a similar striking increase in strength below 3500 K effective temperature.Comment: 11 pages, 6 figures, accepted for publication in Ap
    • …
    corecore