1,572 research outputs found

    Making the best of mixed-field orientation of polar molecules: A recipe for achieving adiabatic dynamics in an electrostatic field combined with laser pulses

    Get PDF
    We have experimentally and theoretically investigated the mixed-field orientation of rotational-state-selected OCS molecules and we achieve strong degrees of alignment and orientation. The applied moderately intense nanosecond laser pulses are long enough to adiabatically align molecules. However, in combination with a weak dc electric field, the same laser pulses result in nonadiabatic dynamics in the mixed-field orientation. These observations are fully explained by calculations employing, both, adiabatic and non-adiabatic time-dependent models.Comment: 5 pages, 4 figure

    Noble internal transport barriers and radial subdiffusion of toroidal magnetic lines

    Full text link
    Single trajectories of magnetic line motion indicate the persistence of a central protected plasma core, surrounded by a chaotic shell enclosed in a double-sided transport barrier : the latter is identified as being composed of two Cantori located on two successive "most-noble" numbers values of the perturbed safety factor, and forming an internal transport barrier (ITB). Magnetic lines which succeed to escape across this barrier begin to wander in a wide chaotic sea extending up to a very robust barrier (as long as L<1) which is identified mathematically as a robust KAM surface at the plasma edge. In this case the motion is shown to be intermittent, with long stages of pseudo-trapping in the chaotic shell, or of sticking around island remnants, as expected for a continuous time random walk.Comment: TEX file, 84 pages including 32 color figures. Higher quality figures can be seen on the PDF file at http://membres.lycos.fr/fusionbfr/JHM/Tokamap/JSP.pd

    Chemical Ecology of Nematodes

    Get PDF
    Nematodes represent the most abundant group of metazoans on earth. They utilize diverse chemicals to interact with con-specific and hetero-specific organisms, and are also impacted by compounds produced by other interacting organisms. In the first part of this review we discuss how nematode-derived glycolipids modulate their behavior and development, as well as the interactions with other organisms. Furthermore, we provide a short overview about other secondary metabolites produced by nematodes that affect different life traits of free-living nematodes. In the second part of this review we discuss how different bacteria-, nematode-, and plant-derived chemicals such as volatile organic compounds, root exudates, and plant defenses regulate the interaction between entomopathogenic nematodes, their symbiotic bacteria, insect prey, predators, and plants

    Ascaroside Signaling Is Widely Conserved among Nematodes

    Get PDF
    Background: Nematodes are among the most successful animals on earth and include important human pathogens, yet little is known about nematode pheromone systems. A group of small molecules called ascarosides has been found to mediate mate finding, aggregation, and developmental diapause in Caenorhabditis elegans, but it is unknown whether ascaroside signaling exists outside of the genus Caenorhabditis. Results: To determine whether ascarosides are used as signaling molecules by other nematode species, we performed a mass spectrometry-based screen for ascarosides in secretions from a variety of both free-living and parasitic (plant, insect, and animal) nematodes. We found that most of the species analyzed, including nematodes from several different clades, produce species-specific ascaroside mixtures. In some cases, ascaroside biosynthesis patterns appear to correlate with phylogeny, whereas in other cases, biosynthesis seems to correlate with lifestyle and ecological niche. We further show that ascarosides mediate distinct nematode behaviors, such as retention, avoidance, and long-range attraction, and that different nematode species respond to distinct, but overlapping, sets of ascarosides. Conclusions: Our findings indicate that nematodes utilize a conserved family of signaling molecules despite having evolved to occupy diverse ecologies. Their structural features and level of conservation are evocative of bacterial quorum sensing, where acyl homoserine lactones (AHLs) are both produced and sensed by many species of gram-negative bacteria. The identification of species-specific ascaroside profiles may enable pheromone-based approaches to interfere with reproduction and survival of parasitic nematodes, which are responsible for significant agricultural losses and many human diseases worldwide

    High‐gain lateral pnp bipolar transistors made using focused ion beam implantation

    Get PDF
    We report the fabrication of lateral pnp bipolar transistors using focused ion beam (FIB) implants of boron and phosphorus for the collector and base, respectively. The implants of B+, P+, and P+ + were all at a dose of 1×1013 /cm2 and a beam voltage of 75 kV. These implants defined spaces between the emitter and collector regions of 0.5–1.50 ÎŒm; which, after diffusion and zero voltage depletion width effects were considered, produced effective on‐wafer device basewidths of ∌0.2 ÎŒm. For the best devices, values of hFE near 100 were obtained with good junction characteristics and at peak collector currents of 10 ÎŒA/ÎŒm of device width
    • 

    corecore