176 research outputs found

    Proteomic analysis of post mortem brain tissue from autism patients: Evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins

    Get PDF
    BACKGROUND: Autism is a neurodevelopmental disorder characterized by impaired language, communication and social skills. Although genetic studies have been carried out in this field, none of the genes identified have led to an explanation of the underlying causes. Here, we have investigated molecular alterations by proteomic profiling of post mortem brain samples from autism patients and controls. The analysis focussed on prefrontal cortex and cerebellum as previous studies have found that these two brain regions are structurally and functionally connected, and they have been implicated in autism. METHODS: Post mortem prefrontal cortex and cerebellum samples from autism patients and matched controls were analysed using selected reaction monitoring mass spectrometry (SRM-MS). The main objective was to identify significantly altered proteins and biological pathways and to compare these across these two brain regions. RESULTS: Targeted SRM-MS resulted in identification of altered levels of proteins related to myelination, synaptic vesicle regulation and energy metabolism. This showed decreased levels of the immature astrocyte marker vimentin in both brain regions, suggesting a decrease in astrocyte precursor cells. Also, decreased levels of proteins associated with myelination and increased synaptic and energy-related proteins were found in the prefrontal cortex, indicative of increased synaptic connectivity. Finally, opposite directional changes were found for myelination and synaptic proteins in the cerebellum. CONCLUSION: These findings suggest altered structural and/or functional connectivity in the prefrontal cortex and cerebellum in autism patients, as shown by opposite effects on proteins involved in myelination and synaptic function. Further investigation of these findings could help to increase our understanding of the mechanisms underlying autism relating to brain connectivity, with the ultimate aim of facilitating novel therapeutic approaches

    Hamiltoniens classiques et gƩomƩtrie k-symplectique

    Get PDF
    We put in obvIously hamilonian maps of classical mecanics in the context of thepolarized Poisson manifolds

    Disaccahrides-based cryo-formulant effect on modulating phospho/mitochondrial lipids and biological profiles of human leukaemia cells

    Get PDF
    BACKGROUND/AIMS: The use of novel cryo-additive agents to increase cell viability post-cryopreservation is paramount to improve future cell based-therapy treatments. We aimed to establish the Human Leukemia (HL-60) cells lipidomic and biological patterns when cryo-preserved in DMSO alone and with 300 ĀµM Nigerose (Nig), 200 ĀµM Salidroside (Sal) or a combination of Nig (150 ĀµM) and Sal (100 ĀµM). METHODS: HL-60 cells were pre-incubated with Nig/Sal prior, during and post cryopreservation, and subjected to global lipidomic analysis. Malondialdeyhde (MDA), released lactate dehydrogenase (LDH) and reactive oxygen scavenger (ROS) measurements were also carried out to evaluate levels of lipid peroxidation and cytotoxicity. RESULTS: Cryopreserving HL-60 cells in DMSO with Nig and Sal provided optimal protection against unsaturated fatty acid oxidation. Post-thaw, cellular phospholipids and mitochondrial cardiolipins were increased by Nig/Sal as the ratio of unsaturated to saturated fatty acids 2.08 +/- 0.03 and 0.95 +/- 0.09 folds respectively in comparison to cells cryopreserved in DMSO alone (0.49 +/- 0.05 and 0.86 +/- 0.10 folds). HL-60 lipid peroxidation levels in the presence of DMSO + Nig and Sal combined were significantly reduced relative to pre-cryopreservation levels (10.91 +/- 2.13 nmole) compared to DMSO (17.1 +/- 3.96 nmole). DMSO + Nig/Sal combined also significantly reduced cell cytotoxicity post-thaw (0.0128 +/- 0.00182 mU/mL) in comparison to DMSO (0.0164 +/- 0.00126 mU/mL). The combination of Nig/Sal also reduced significantly ROS levels to the levels of prior cryopreservation of HL-60. CONCLUSION: Overall, the establishment of the cryopreserved HL-60 cells lipidomic and the corresponding biological profiles showed an improved cryo-formulation in the presence of DMSO with the Nig/Sal combination by protecting the, mitochondrial inner membrane, unsaturated fatty acid components (i. e. Cardiolipins) and total phospholipids

    Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders

    Get PDF
    Background: Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1neo-/-) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of this model will help to identify novel biomarkers or potential drug targets. Methods. Here, we have used multiplex immunoassay analyses to investigate peripheral analyte alterations in serum of NR1neo-/- mice, as well as a combination of shotgun label-free liquid chromatography mass spectrometry, bioinformatic pathway analyses, and a shotgun-based 40-plex selected reaction monitoring (SRM) assay to investigate altered molecular pathways in the frontal cortex and hippocampus. All findings were cross compared to identify translatable findings between the brain and periphery. Results: Multiplex immunoassay profiling led to identification of 29 analytes that were significantly altered in sera of NR1neo-/- mice. The highest magnitude changes were found for neurotrophic factors (VEGFA, EGF, IGF-1), apolipoprotein A1, and fibrinogen. We also found decreased levels of several chemokines. Following this, LC-MS E profiling led to identification of 48 significantly changed proteins in the frontal cortex and 41 in the hippocampus. In particular, MARCS, the mitochondrial pyruvate kinase, and CamKII-alpha were affected. Based on the combination of protein set enrichment and bioinformatic pathway analysis, we designed orthogonal SRM-assays which validated the abnormalities of proteins involved in synaptic long-term potentiation, myelination, and the ERK-signalling pathway in both brain regions. In contrast, increased levels of proteins involved in neurotransmitter metabolism and release were found only in the frontal cortex and abnormalities of proteins involved in the purinergic system were found exclusively in the hippocampus. Conclusions: Taken together, this multi-platform profiling study has identified peripheral changes which are potentially linked to central alterations in synaptic plasticity and neuronal function associated with NMDAR-NR1 hypofunction. Therefore, the reported proteomic changes may be useful as translational biomarkers in human and rodent model drug discovery efforts

    Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients

    Get PDF
    Major depressive disorder (MDD) is a leading cause of disability worldwide and results tragically in the loss of almost one million lives in Western societies every year. This is due to poor understanding of the disease pathophysiology and lack of empirical medical tests for accurate diagnosis or for guiding antidepressant treatment strategies. Here, we have used shotgun proteomics in the analysis of post-mortem dorsolateral prefrontal cortex brain tissue from 24 MDD patients and 12 matched controls. Brain proteomes were pre-fractionated by gel electrophoresis and further analyzed by shotgun data-independent label-free liquid chromatography-mass spectrometry. This led to identification of distinct proteome fingerprints between MDD and control subjects. Some of these differences were validated by Western blot or selected reaction monitoring mass spectrometry. This included proteins associated with energy metabolism and synaptic function and we also found changes in the histidine triad nucleotide-binding protein 1 (HINT1), which has been implicated recently in regulation of mood and behavior. We also found differential proteome profiles in MDD with (n=11) and without (n=12) psychosis. Interestingly, the psychosis fingerprint showed a marked overlap to changes seen in the brain proteome of schizophrenia patients. These findings suggest that it may be possible to contribute to the disease understanding by distinguishing different subtypes of MDD based on distinct brain proteomic profiles

    Human leukemia cells (HL-60) proteomic and biological signatures underpinning cryo-damage are differentially modulated by novel cryo-additives

    Get PDF
    Cryopreservation is a routinely used methodology for prolonged storage of viable cells. The use of cryo-protective agents (CPAs) such as dimethylsulfoxide (DMSO), glycerol, or trehalose is paramount to reducing cellular cryo-injury, but their effectiveness is still limited. The current study focuses on establishing and modulating the proteomic and the corresponding biological profiles associated with the cryo-injury of human leukemia (HL-60) cells cryopreserved in DMSO alone or DMSO +/-novel CPAs (e. g., nigerose [Nig] or salidroside [Sal]). Findings: To reduce cryo-damage, HL-60 cells were cultured prior and post cryopreservation in malondialdehyde Roswell Park Memorial Institute medium-1640 media +/- Nig or Sal. Shotgun proteomic analysis showed significant alterations in the levels of proteins in cells cryopreserved in Nig or Sal compared to DMSO. Nig mostly affected cellular metabolism and energy pathways, whereas Sal increased the levels of proteins associated with DNA repair/duplication, RNA transcription, and cell proliferation. Validation testing showed that the proteome profile associated with Sal was correlated with a 2.8-fold increase in cell proliferative rate. At the functional level, both Nig and Sal increased glutathione reductase (0.0012 +/- 6.19E-05 and 0.0016 +/- 3.04E-05 mU/mL, respectively) compared to DMSO controls (0.0003 +/- 3.7E-05 mU/mL) and reduced cytotoxicity by decreasing lactate dehydrogenase activities (from -2.5 to -4.75 fold) and lipid oxidation (-1.6 fold). In contrast, only Nig attenuated protein carbonylation or oxidation. Conclusions: We have identified key molecules and corresponding functional pathways underpinning the effect of cryopreservation (+/- CPAs) of HL-60 cells. We also validated the proteomic findings by identifying the corresponding biological profiles associated with promoting an anti-oxidative environment post cryopreservation. Nig or Sal in comparison to DMSO showed differential or additive effects in regard to reducing cryo-injury and enhancing cell survival/proliferation post thaw. These results can provide useful insight to cryo-damage and the design of enhanced cryomedia formulation83CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTƍFICO E TECNOLƓGICO - CNPQFUNDAƇƃO DE AMPARO ƀ PESQUISA DO ESTADO DE SƃO PAULO - FAPESP460 289/2014ā€“42014/14 881ā€“1; 2013/0 8711ā€“3; 2014/10 068ā€“4This work was supported by the King Abdul Aziz City for Science and Technology research fund. J.S.C. and D.,M.S. are funded by FAPESP (SĆ£o Paulo Research Foundation, grants 2014/14 881ā€“1, 2013/0 8711ā€“3, and 2014/10 068ā€“4) and CNPq (the Brazilian National Council for Scientific and Technological Development, grant 460 289/2014ā€“4

    Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment

    Get PDF
    Schizophrenia has been associated with central nervous system and peripheral immune system imbalances. However, most studies have not yielded conclusive results due to limitations such as small sample size, dissimilarities in the clinical status of patients and the high variability of cytokine levels within the normal human population. Here, we have attempted to account for these limitations by carrying out standardised multiplex immunoassay analyses of 9 cytokines in serum from 180 antipsychotic-naĆÆve first-episode schizophrenia patients and 350 matched controls across 5 clinical cohorts. All subjects were matched for potential confounding factors including age, gender, smoking and body mass index. We found that the levels of interleukin (IL)-1RA, IL-10 and IL-15 were increased significantly in patients across the cohorts. We also found that the levels of IL-1RA and IL-10 were decreased in 32 patients who had been followed up and treated for 6. weeks with atypical antipsychotics. Interestingly, we found that the changes in IL-10 levels were significantly correlated with the improvements in negative, general and total symptom scores. These results indicate that mixed pro- and anti-inflammatory responses may be altered in first onset patients, suggesting a role in the aetiology of schizophrenia. The finding that only the anti-inflammatory cytokine IL-10 responded to treatment in parallel with symptom improvement suggests that this could be used as a potential treatment response biomarker in future studies of schizophrenia

    Proteomic changes in serum of first onset, antidepressant drug-naĆÆve major depression patients

    Get PDF
    Major depressive disorder (MDD) is a complex and multi-factorial disorder. Although genetic factors and other molecular aspects of MDD have been widely studied, the underlying pathological mechanisms are still mostly unknown. We sought to investigate the pathophysiology of MDD by identifying and characterising serum molecular differences and their correlation to symptom severity in first onset, antidepressant drug-naĆÆve MDD patients. We performed an exploratory molecular profiling study on serum samples of MDD patients and controls using multiplex immunoassay and label-free liquid chromatography mass spectrometry in data independent mode (LC-MSE). We included two independent cohorts of first onset, antidepressant drug-naĆÆve MDD patients (n = 23 and 15) and matched controls (n = 42 and 21) in our study in order to validate the results. The main outcome included the following list of circulatory molecules changing and/or correlating to symptom severity: angiotensin-converting enzyme, acute phase proteins (e.g. ferritin and serotransferrin), brain-derived neurotrophic factor, complement component C4-B, cortisol, cytokines (e.g. macrophage migration inhibitory factor and interleukin-16), extracellular newly identified receptor for advanced glycosylation end products-binding protein, growth hormone and superoxide dismutase-1. This study provides evidence of an increased pro-inflammatory and oxidative stress response, followed by a hyperactivation of the HPA-axis in the acute stages of first onset MDD, as well as a dysregulation in growth factor pathways. These findings help to elucidate MDD related pathways in more detail and further studies may lead to identification of novel drug targets, inc

    Dapagliflozin Monotherapy in Type 2 Diabetic Patients With Inadequate Glycemic Control by Diet and Exercise: A randomized, double-blind, placebo-controlled, phase 3 trial

    Get PDF
    OBJECTIVE - Dapagliflozin, a highly selective inhibitor of the renal sodium-glucose co-transporter-2, increases urinary excretion of glucose and lowers plasma glucose levels in an insulin-independent manner. We evaluated the efficacy and safety of dapagliflozin in treatment-naive patients with type 2 diabetes. RESEARCH DESIGN AND METHODS - This was a 24-week parallel-group, double-blind, placebo-controlled phase 3 trial. Patients with A1C 7.0-10% (n = 485) were randomly assigned to one of seven arms to receive once-daily placebo or 2.5, 5, or 10 mg dapagliflozin once daily in the morning (main cohort) or evening (exploratory cohort). Patients with A1C 10.1-12% (high-A1C exploratory cohort, it n=73) were randomly assigned 1:1 to receive blinded treatment with a morning close of 5 or 10 mg/day dapagliflozin. The primary end point was change from baseline in A1C in the main cohort, statistically tested using an ANCOVA. RESULTS - In the main cohort, mean A1C changes from baseline at week 24 were -0.23% with placebo and -0.58, -0.77 (P = 0.0005 vs. placebo), and -0.89% (P < 0.0001, vs. placebo) with 2.5, 5, and 10 mg dapagliflozin, respectively. Signs, symptoms, and other reports suggestive of urinary tract infections and genital infection were more frequently noted in the dapagliflozin arms. There were no major episodes of hypoglycemia. Data from exploratory cohorts were consistent with these results. CONCLUSIONS - Dapagliflozin lowered hyperglycemia in treatment-naive patients with newly diagnosed type 2 diabetes. The near absence of hypoglycemia and an insulin-independent mechanism of action make dapagliflozin a unique addition to existing treatment options for type 2 diabetes

    LC-MS PHENOLIC COMPOSITION CHANGES AND ANTIOXIDANT CAPACITIES OF THE SAHARAN TREE ARGANIA SPINOSA LEAVES UNDER SALNITY

    Get PDF
    Adaptation of many plant species to hostile environmental conditions suggest the presence of powerful antioxidative constituents in their tissues such as phenolic compounds. Many works on antioxidant activity of the Moroccan argan oil have been carried out. However, it is the first time that salt impact on Algerian arganleaves is assessed. The main objective of this work was to study the soil salinity impact on phenolic content and composition, and the antioxidant activities of the argan leaves collected from three point in the same site of Tindouf region (Algeria) characterized by a gradient of salt concentration (Lightly Salt Tindouf, Salt Tindouf and Very Salt Tindouf). Variability of phenolic contents, antioxidant and free radical-scavenging activities of the argan leaves as function of salt soil concentration were evaluated. Identification was done by LC-MS system. Regarding phenolic contents (total polyphenol, flavonoid and condensed tannin), the Salt Tindouf leaves displayed the highest amounts (total polyphenol = 77.28 mg GAE/g DW). Moreover, the same tendency was observed for antioxidant activities, for instance, total antioxidant activity of leaves from Salt Tindouf was the highest (83.6 mg GAE/g DW). In addition, leaves from Salt Tindouf displayed the highest scavenging activity against DPPH radical (IC50 = 6.5 Ī¼g/ml) as compared to the two others points. These results were also confirmed by LC-MS analyses. Leaves synthesize more compounds with very important biological activities under salinity which allow them to be valorized in different fields, such as pharmacology and agro-food industries
    • ā€¦
    corecore