9,372 research outputs found
On the observability of resonant structures in planetesimal disks due to planetary migration
We present a thorough study of the impact of a migrating planet on a
planetesimal disk, by exploring a broad range of masses and eccentricities for
the planet. We discuss the sensitivity of the structures generated in debris
disks to the basic planet parameters. We perform many N-body numerical
simulations, using the symplectic integrator SWIFT, taking into account the
gravitational influence of the star and the planet on massless test particles.
A constant migration rate is assumed for the planet. The effect of planetary
migration on the trapping of particles in mean motion resonances is found to be
very sensitive to the initial eccentricity of the planet and of the
planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out
all the resonant structures, except for the most massive planets. The
planetesimals also initially have to be on orbits with a mean eccentricity of
less than than 0.1 in order to keep the resonant clumps visible. This numerical
work extends previous analytical studies and provides a collection of disk
images that may help in interpreting the observations of structures in debris
disks. Overall, it shows that stringent conditions must be fulfilled to obtain
observable resonant structures in debris disks. Theoretical models of the
origin of planetary migration will therefore have to explain how planetary
systems remain in a suitable configuration to reproduce the observed
structures.Comment: 16 pages, 13 figures. Accepted for publication in A&
A causal look into the quantum Talbot effect
A well-known phenomenon in both optics and quantum mechanics is the so-called
Talbot effect. This near field interference effect arises when infinitely
periodic diffracting structures or gratings are illuminated by highly coherent
light or particle beams. Typical diffraction patterns known as quantum carpets
are then observed. Here the authors provide an insightful picture of this
nonlocal phenomenon as well as its classical limit in terms of Bohmian
mechanics, also showing the causal reasons and conditions that explain its
appearance. As an illustration, theoretical results obtained from diffraction
of thermal He atoms by both N-slit arrays and weak corrugated surfaces are
analyzed and discussed. Moreover, the authors also explain in terms of what
they call the Talbot-Beeby effect how realistic interaction potentials induce
shifts and distortions in the corresponding quantum carpets.Comment: 12 pages, 6 figure
A Link-Level Simulator of the cdma2000 Reverse-Link Physical Layer.
The cdma2000 system is an evolutionary enhancement of the IS-95 standards which support 3G services defined by the International Telecommunications Union (ITU). cdma2000 comes in two phases: 1XRTT and 3XRTT (1X and 3X indicates the number of 1.25 MHz wide radio carrier channels used and RTT stands for Radio Transmission Technology). The cdma2000 1XRTT, which operates within a 1.25 MHz bandwidth, can be utilized in existing IS-95 CDMA channels as it uses the same bandwidth, while 3XRTT requires the commitment of 5 MHz bandwidth to support higher data rates. This paper describes a software model implementation of the cdma2000 reverse link and its application for evaluating the effect of rake receiver design parameters on the system performance under various multipath fading conditions. The cdma2000 models were developed at the National Institute of Standards and Technology (NIST), using SPW (Signal Processing Worksystem) commercial software tools. The model has been developed in a generic manner that includes all the reverse link six radio configurations and their corresponding data rates, according to cdma2000 specifications. After briefly reviewing the traffic channel characteristics of the cdma2000 reverse link (subscriber to base station), the paper discusses the rake receiver implementation including an ideal rake receiver. It then evaluates the performance of each receiver for a Spreading Rate 3 (3XRTT) operation, which is considered as a true "3G" cdma2000 technology. These evaluations are based on the vehicular IMT-2000 (International Mobile Telecommunication 2000) channel model using the link budget defined in cdma2000 specifications for the reverse link
Steady-state evolution of debris disks around A stars
In this paper a simple analytical model for the steady-state evolution of
debris disks due to collisions is confronted with Spitzer observations of main
sequence A stars. All stars are assumed to have planetesimal belts with a
distribution of initial masses and radii. In the model disk mass is constant
until the largest planetesimals reach collisional equilibrium whereupon the
mass falls off oc 1/t. We find that the detection statistics and trends seen at
both 24 and 70um can be fitted well by the model. While there is no need to
invoke stochastic evolution or delayed stirring to explain the statistics, a
moderate rate of stochastic events is not ruled out. Potentially anomalous
systems are identified by a high dust luminosity compared with the maximum
permissible in the model (HD3003, HD38678, HD115892, HD172555). Their
planetesimals may have unusual properties (high strength or low eccentricity)
or this dust could be transient. While transient phenomena are also favored for
a few systems in the literature, the overall success of our model, which
assumes planetesimals in all belts have the same strength, eccentricity and
maximum size, suggests a large degree of uniformity in the outcome of planet
formation. The distribution of planetesimal belt radii, once corrected for
detection bias, follows N(r) oc r^{-0.8+-0.3} for 3-120AU. Since the inner edge
is often attributed to an unseen planet, this provides a unique constraint on
the planetary systems of A stars. It is also shown that P-R drag may sculpt the
inner edges of A star disks close to the Spitzer detection threshold (HD2262,
HD19356, HD106591, HD115892). This model can be readily applied to the
interpretation of future surveys, and predictions are made for the upcoming
SCUBA-2 survey, including that >17% of A stars should be detectable at 850um.Comment: Accepted by Ap
Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science
The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations
Warm Debris Disks Candidates in Transiting Planets Systems
We have bandmerged candidate transiting planetary systems (from the Kepler
satellite) and confirmed transiting planetary systems (from the literature)
with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release
catalog. We have found 13 stars showing infrared excesses at either 12 and/or
22 microns. Without longer wavelength observations it is not possible to
conclusively determine the nature of the excesses, although we argue that they
are likely due to debris disks around the stars. If confirmed, our sample ~
doubles the number of currently known warm excess disks around old main
sequence stars. The ratios between the measured fluxes and the stellar
photospheres are generally larger than expected for Gyr-old stars, such as
these planetary hosts. Assuming temperature limits for the dust and emission
from large dust particles, we derive estimates for the disk radii. These values
are comparable to the planet's semi-major axis, suggesting that the planets may
be stirring the planetesimals in the system.Comment: Submitted to A&A: 21 October 2011 / Accepted for publication in A&A:
27 February 201
Structuring Life After Death: Plant Leachates Promote CO2 Uptake by Regulating Microbial Biofilm Interactions in a Northern Peatland Ecosystem
Shifts in plant functional groups associated with climate change have the potential to influence peatland carbon storage by altering the amount and composition of organic matter available to aquatic microbial biofilms. The goal of this study was to evaluate the potential for plant subsidies to regulate ecosystem carbon flux (CO2) by governing the relative proportion of primary producers (microalgae) and heterotrophic decomposers (heterotrophic bacteria) during aquatic biofilm development in an Alaskan fen. We evaluated biofilm composition and CO2 flux inside mesocosms with and without nutrients (both nitrogen and phosphorus), organic carbon (glucose), and leachates from common peatland plants (moss, sedge, shrub, horsetail). Experimental mesocosms were exposed to either natural sunlight or placed under a dark canopy to evaluate the response of decomposers to nutrients and carbon subsidies with and without algae, respectively. Algae were limited by inorganic nutrients and heterotrophic bacteria were limited by organic carbon. The quality of organic matter varied widely among plants and leachate nutrient content, more so than carbon quality, influenced biofilm composition. By alleviating nutrient limitation of algae, plant leachates shifted the biofilm community toward autotrophy in the light-transparent treatments, resulting in a significant reduction in CO2 emissions compared to the control. Without the counterbalance from algal photosynthesis, a heterotrophic biofilm significantly enhanced CO2 emissions in the presence of plant leachates in the dark. These results show that plants not only promote carbon uptake directly through photosynthesis, but also indirectly through a surrogate, the phototrophic microbes
The necessary future of chiropractic education: a North American perspective
The chiropractic educational system in North America is currently in a state of flux. The attempted conversion of some chiropractic schools into "universities" and the want of university affiliation for chiropractic schools suggests that we are searching for a better alternative to the present system. In the early 20(th )century, the Flexner Report helped transform modern medical education into a discipline that relies on scientific and clinical knowledge. Some have wondered if it is time for a Flexner-type report regarding the education of doctors of chiropractic. This article outlines the current challenges within the chiropractic educational system and proposes positive changes for that system
- …