118 research outputs found

    Talking quiescence: a rigorous theory that supports parallel composition, action hiding and determinisation

    Get PDF
    The notion of quiescence - the absence of outputs - is vital in both behavioural modelling and testing theory. Although the need for quiescence was already recognised in the 90s, it has only been treated as a second-class citizen thus far. This paper moves quiescence into the foreground and introduces the notion of quiescent transition systems (QTSs): an extension of regular input-output transition systems (IOTSs) in which quiescence is represented explicitly, via quiescent transitions. Four carefully crafted rules on the use of quiescent transitions ensure that our QTSs naturally capture quiescent behaviour. We present the building blocks for a comprehensive theory on QTSs supporting parallel composition, action hiding and determinisation. In particular, we prove that these operations preserve all the aforementioned rules. Additionally, we provide a way to transform existing IOTSs into QTSs, allowing even IOTSs as input that already contain some quiescent transitions. As an important application, we show how our QTS framework simplifies the fundamental model-based testing theory formalised around ioco.Comment: In Proceedings MBT 2012, arXiv:1202.582

    A Hierarchy of Scheduler Classes for Stochastic Automata

    Get PDF
    Stochastic automata are a formal compositional model for concurrent stochastic timed systems, with general distributions and non-deterministic choices. Measures of interest are defined over schedulers that resolve the nondeterminism. In this paper we investigate the power of various theoretically and practically motivated classes of schedulers, considering the classic complete-information view and a restriction to non-prophetic schedulers. We prove a hierarchy of scheduler classes w.r.t. unbounded probabilistic reachability. We find that, unlike Markovian formalisms, stochastic automata distinguish most classes even in this basic setting. Verification and strategy synthesis methods thus face a tradeoff between powerful and efficient classes. Using lightweight scheduler sampling, we explore this tradeoff and demonstrate the concept of a useful approximative verification technique for stochastic automata

    Explicit Model Checking of Very Large MDP using Partitioning and Secondary Storage

    Full text link
    The applicability of model checking is hindered by the state space explosion problem in combination with limited amounts of main memory. To extend its reach, the large available capacities of secondary storage such as hard disks can be exploited. Due to the specific performance characteristics of secondary storage technologies, specialised algorithms are required. In this paper, we present a technique to use secondary storage for probabilistic model checking of Markov decision processes. It combines state space exploration based on partitioning with a block-iterative variant of value iteration over the same partitions for the analysis of probabilistic reachability and expected-reward properties. A sparse matrix-like representation is used to store partitions on secondary storage in a compact format. All file accesses are sequential, and compression can be used without affecting runtime. The technique has been implemented within the Modest Toolset. We evaluate its performance on several benchmark models of up to 3.5 billion states. In the analysis of time-bounded properties on real-time models, our method neutralises the state space explosion induced by the time bound in its entirety.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-24953-7_1

    Electric-field-induced alignment of electrically neutral disk-like particles: modelling and calculation

    Get PDF
    This work reveals a torque from electric field to electrically neutral flakes that are suspended in a higher electrical conductive matrix. The torque tends to rotate the particles toward an orientation with its long axis parallel to the electric current flow. The alignment enables the anisotropic properties of tiny particles to integrate together and generate desirable macroscale anisotropic properties. The torque was obtained from thermodynamic calculation of electric current free energy at various microstructure configurations. It is significant even when the electrical potential gradient becomes as low as 100 v/m. The changes of electrical, electroplastic and thermal properties during particles alignment were discussed

    Symbolic Verification and Strategy Synthesis for Linearly-Priced Probabilistic Timed Automata

    Get PDF
    Probabilistic timed automata are a formalism for modelling systems whose dynamics includes probabilistic, nondeterministic and timed aspects including real-time systems. A variety of techniques have been proposed for the analysis of this formalism and successfully employed to analyse, for example, wireless communication protocols and computer security systems. Augmenting the model with prices (or, equivalently, costs or rewards) provides a means to verify more complex quantitative properties, such as the expected energy usage of a device or the expected number of messages sent during a protocol’s execution. However, the analysis of these properties on probabilistic timed automata currently relies on a technique based on integer discretisation of real-valued clocks, which can be expensive in some cases. In this paper, we propose symbolic techniques for verification and optimal strategy synthesis for priced probabilistic timed automata which avoid this discretisation. We build upon recent work for the special case of expected time properties, using value iteration over a zone-based abstraction of the model

    The influence of different culture microenvironments on the generation of dendritic cells from non-small-cell lung cancer patients

    Get PDF
    This study extends the model developed in Williams and Seaman’s [Williams, J. J. and Seaman, A. E. (2010). Corporate Governance and Mindfulness: The Impact of Management Accounting Systems Change, The Journal of Applied Business Research, Vol. 26, No. 5, pp. 1-17] exploratory paper examining the moderating effects of management accounting systems (MAS) change on the corporate governance/mindfulness relationship for a Canadian sample of 124 top-level accounting professionals. Canonical correlation analysis was applied to the linkage of multiple cognitive processes of mindfulness (Weick and Sutcliffe, 2001; 2007) and the governance dimensions of performance and conformance specified by the International Federation of Accountants (2009), underpinned by the moderating effects of five different components of MAS change, which yielded 13 significant relationships. The latter were subsequently analyzed for important gestalts (i.e., patterns) in the overall relationship, and assessed within the context of aligning professional accounting practices involving systems changes to the IFAC (2009) governance framework. These findings appear to have implications for improved governance structures in practice as well as offering a rich foundation for future research

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201
    corecore