
Model-Based Testing of Probabilistic Systems
with Stochastic Time

Marcus Gerhold and Mariëlle Stoelinga(B)

University of Twente, Enschede, The Netherlands
m.gerhold@utwente.nl, marielle@cs.utwente.nl

Abstract. This paper presents a model-based testing framework for
black-box probabilistic systems with stochastic continuous time. Markov
automata are used as an underlying model. We show how to generate,
execute and evaluate test cases automatically from a probabilistically
timed requirements model. In doing so, we connect classical ioco-theory
with statistical hypothesis testing; our ioco-style algorithms test for
functional behaviour, while χ2 hypothesis tests and confidence interval
estimations assess the statistical correctness of the system.

A crucial development are the classical soundness and completeness
properties of our framework. Soundness states that test cases assign the
correct verdict, while completeness states that our methods are powerful
enough to discover each discrepancy in functional or statistical misbe-
haviour, up to arbitrary precision.

We illustrate our framework via the Bluetooth device discovery
protocol.

1 Introduction

The role of computer-based systems is ever increasing: robots, drones and
autonomous cars will soon pervade our lives. Attuning to this progress, ver-
ification and validation techniques of these systems have grown to a field of
crucial importance. They provide methods that show whether the actual and
the intended behaviour of a system differ, or give confidence that they do not.

Conversely, the progressively intricate design of embedded systems continu-
ously brings new challenges to the field of verification engineers. The key question
of whether a system works as intended therefore has a variety of angles: Was
the functional behaviour correctly implemented? Does the system continue to
operate under a work overload? Is the average lifetime within safety regulations?
Can requirements be met on time?

Probabilistic aspects in many computer applications naturally add one of
those angles. Security protocols use random bits in their encryption methods [9],
control policies in robots lead to the emerging fields of probabilistic robotics [46],

This research has been partially funded by STW and ProRail under the project
ArRangeer (12238), STW under the project SEQUOIA (15474), NWO under the
project BEAT (612.001.303), NWO under the project SamSam (628.005.015), and
the EU under the project SUCCESS (509-18240).

c© Springer International Publishing AG 2017
S. Gabmeyer and E.B. Johnsen (Eds.): TAP 2017, LNCS 10375, pp. 77–97, 2017.
DOI: 10.1007/978-3-319-61467-0 5

78 M. Gerhold and M. Stoelinga

hidden Markov chains are used in speech recognition [39] and communication
protocols are often equipped with a stochastic delay [15,44]. Therefore, there is
a natural demand for a pendant in the verification and validation community
that accounts for probabilistic aspects.

Testing. To investigate such questions, probabilistic verification has become
a mature research field with techniques like stochastic model checking (SMC)
[38] based on models like probabilistic automata [40], Markov decision processes
[37], generalised stochastic Petri nets [33] or stochastic automata [12]. These
techniques are complemented with tools like PRISM [29], PLASMA [27] or the
MODEST toolset [20].

In practice, however, the most common validation technique is testing. The
system is subjected to many well-designed test cases and the outcome is compared
to a specification.Averdict, i.e. pass or fail, is then given based on the expectations.

This paper presents a model-based testing (MBT) approach that can handle
probabilistic and stochastic-time aspects in systems. MBT gained a lot of trac-
tion in recent years in both academia and industry. It mirrors the faster devel-
opment of systems, by providing access to faster test methods due to automa-
tion. Test cases are automatically generated, executed and evaluated based on
a requirements specification. A number of industrial and academic MBT tools
have been developed, such as TorXakis [35], MaTeLo [19], UPPAAL Tron [22]
or SpecExplorer [51].

There is a large body of different frameworks that accommodate a variety of
requirements aspects, like functional properties [50], real-time [2,6,30], quanti-
tative aspects [3,5] and coverage [7]. Surprisingly, only few papers are concerned
with the testing of probabilistic systems1, with some notable exceptions being
[24–26].

We present an applicable framework in an MBT setting, that is capable of
verifying if probabilistic choices made by the system itself were implemented cor-
rectly. Furthermore, the approach also accommodates stochastic-time aspects of
systems, such as specified delays, degradation rates or intended waiting periods.
This is of particular interest, if only the mean duration of an activity is known.

Our Approach. The foundation of our methodology are Markov automata
(MAs). MAs are equipped with both probabilistic and nondeterministic choices.
The first represent choices made by the system (e.g. coin tosses or random seeds)
or the environment (e.g. degradation rates or failure probabilities). The latter
model choices that are not under its control. As widely agreed [40,43], nonde-
terminism is crucial for implementation freedom, scheduling choices and inter-
leaving. Complementary, they are of particular interest because of their memo-
ryless exponential distributed timed transitions. These give a highly appropriate
stochastic approximation, if only the mean duration of an activity is known,
as is often the case in a practical setting. Mathematically, MAs arise as the

1 The topic of statistical testing, e.g. [1,52], is concerned with choosing test inputs
probabilistically; it does not check the correctness of the random choices made by a
system itself.

Model-Based Testing of Probabilistic Systems with Stochastic Time 79

conservative extension of both probabilistic automata (PAs) [40] and interactive
Markov chains (IMCs) [21].

An important contribution are our algorithms that automatically generate,
execute and evaluate probabilistic test cases from a specification MA. They
check the functional, probabilistic and stochastic-time behaviour of the system.
Probabilities are observed via frequencies, hence, test cases need to be repeated
multiple times. We use statistical hypothesis testing, in particular χ2 testing, to
assess whether a test should pass or fail.

To account for the correctness of our framework, we prove it to be sound
and complete. Soundness states that each test case assigns the correct verdict,
while completeness (a.k.a. exhaustiveness) guarantees that the test method is
powerful enough to discover each deviation from the requirements. Phrasing
these results requires a mathematical notion of conformance. We propose the
Mar-ioco relation, an implementation relation that pins down precisely when
an implementation modelled as an MA conforms to a requirements specification
model. We prove Mar-ioco to be a conservative extension to the ioco relation
known from MBT literature [47,50]. Lastly, we provide a case study on the
Bluetooth device discovery protocol showing the applicability of our framework.

While test efficiency is essential, this paper focusses on the methodological
set up and correctness. Imperative future research is to optimize the statistical
verdicts we give and provide fully fledged tool support.

We summarize our key contributions:

1. The general input output Markov automata model comprising discrete proba-
bility distributions, non-deterministic choices and exponentially delayed tran-
sitions,

2. a behavioural description for Markov automata based on trace semantics,
3. solid definitions of probabilistic test cases, test execution and verdicts,
4. the treatment of the absence of outputs in a stochastically time delayed setting

and
5. the soundness and completeness results of our framework.

Related Work. There is a large body of work on testing real-time systems
[2,6,28,30]. Briones and Brinksma [6] extend the framework to incorporate the
notion of quiescence, i.e. the absence of outputs.

Conversely, probabilistic testing preorders and equivalences are well-studied
[10,14,40]. Distinguished work by [31] introduces the concept of probabilistic
bisimulation via hypothesis testing. Largely influential work is given by [8], pre-
senting how to observe trace frequencies during a sampling process. Executable
probabilistic test frameworks are suggested for probabilistic finite state machines
in [23,26] and Petri nets [4].

Closely related to our work is the study of Markovian bisimulation. The
foundation of an observational equivalence is presented in [16] in the form of
weak bisimulation for Markov automata, and was refined by introducing late-
weak bisimulation [13,42] and branching bisimulation [49].

This paper is an extension of earlier work [17] that investigated the test
process in the probabilistic setting and a workshop paper [18] sketching how

80 M. Gerhold and M. Stoelinga

stochastic time and exponential delays can be incorporated. Novel contributions
of the current version are the complete integration of stochastic-time delays and
the treatment of quiescence.

Overview Over the Paper. In Sect. 2 we recall definitions of Markov
automata. Section 3 describes how Markov automata are used in the testing
process and Sect. 4 shows that our framework is sound and complete. We show
experimental results in Sect. 5. The paper ends in Sect. 6 with conclusions and
future work.

2 Markov Automata

We recall properties of Markov automata and show how nondeterminism is
resolved. We assume that the reader is acquainted with the basics of probabil-
ity theory, but recall integral definitions. In particular, we borrow the standard
construction of probability spaces via σ-fields. See [11] for an excellent overview
and further reading.

Probability. A discrete probability distribution over a set X is a function μ : X
→ [0, 1], such that

∑
x∈X μ (x) = 1. The set of all distributions over X is denoted

Distr (X) and subdistributions SubDistr (X) respectively.
Let Ω be a set, F a σ-field of Ω and (Ω,F) the resulting measurable space.

A σ-additive function μ : F → [0, 1] is called a probability measure, if μ (Ω) = 1.
We denote the set of all probability measures over X by Meas (X).

A probability space is a triple (Ω,F ,Pr), where Ω is a set, F is a σ-field
of Ω and Pr : F → [0, 1] is a probability measure, such that Pr (Ω) = 1 and
Pr (

⋃∞
i=1 Ai) =

∑∞
i=1 Pr (Ai) for Ai ∈ F , i = 1, 2 . . . pairwise disjoint.

2.1 The Markov Automaton Model

Markov automata [48] comprise nondeterministic choices, discrete probability
distributions and exponentially delayed transitions. They allow modelling choices
made by the system (e.g. coin tosses) or the environment (e.g. degradation rates)
and are an appropriate stochastic approximation, if only the mean duration of
an activity is known.

Definition 1. A Markov automaton M = 〈S, s0, L,→,�〉 is a five-tuple,
consisting of

– S a set of states, with s0 the unique starting state,
– L a set of actions,
– →⊆ S × L × Distr (S), the probabilistic transition relation and
– �⊆ S × R≥0 × S, the Markovian transition relation.

An IOMA is an MA, where L = Li � Lo � Lτ is the disjoint union of input,
output, and internal actions respectively, containing a special quiescence label
δ ∈ Lo.

Model-Based Testing of Probabilistic Systems with Stochastic Time 81

Fig. 1. Protocol specification IOMA and two erroneous implementations. After the
input send? there is an exponentially delayed transition, followed by an acknowledge-
ment or error output.

If we replace → by →′⊆ S × Distr (L × S) with the requirement that for all
(s, μ) ∈→′ if μ (s, a) > 0 for an input a ∈ Li, then μ (s, b) = 0 for all b �= a, the
input output MA becomes input-reactive and output-generative.

An action a is enabled in state s, if there is a distribution μ, such that
(s, μ) ∈→ and μ (a, s′) > 0 for some s′ ∈ S. We write enabled {s} for the set of
enabled actions in s. A state is called probabilistic, if at least one action of L is
enabled. A state is called input-enabled, if all actions of the set Li are enabled.
A state is called Markovian, if it has at least one transition (s, λ, s′) ∈�. The
Markovian actions are parameters for the exponentially delayed transitions and
therefore deemed invisible.

A distinctive feature of Markov automata are their exponentially distributed
timed transitions, i.e. the set �. The rate to go from a state s to a state s′ is the
sum of all λ, such that (s, λ, s′) ∈� and is denoted R (s, s′). The sum of all rates
in a state s is called exit rate of s and denoted by E (s). We require E (s) < ∞
for all s ∈ S. The delay associated with a Markovian state is exponentially
distributed with its exit rate. Multiple Markovian transitions in one state thus
lead to a race condition. The probability to move from s to a successor s′ equals
the probability that (one of) the Markovian transitions leading from s to s′ wins
the race. This induces the discrete branching probability distribution Ps for s
given by Ps (s′) = R (s, s′) /E (s).

A state is called stable, if it enables no internal action. We employ the maximal
progress assumption, meaning that time is not allowed to progress in unstable
states. This renders Markovian transitions in unstable states unnecessary [32].

Example 1. Fig. 1 shows three input-reactive output-generative IOMA. The
model describes a protocol that associates a delay with every sent action, followed
by an acknowledgement or error. Input is suffixed with “?” and output with “!”.
Discrete probability distributions are denoted with a dotted arc, together with
the action label and corresponding probabilities. Markovian actions are presented
as staggered arrows.

82 M. Gerhold and M. Stoelinga

After the send? input is received, there is an expected delay indicated by the
Markovian action λ. The delay is exponentially distributed, thus, the probability
to go from s1 to s2 in T time units is 1 − e−λT . In state s2 there is one outgoing
discrete probability distribution. The specification in Fig. 1a implies that only
10% of all messages should end in an error report and the remaining 90% get
delivered correctly. After a message is delivered, the automaton goes back to its
initial state where it stays quiescent until input is provided. This is denoted with
the δ self-loop, marking the desired absence of outputs.

2.2 Paths and Traces

Let M = 〈S, s0, L,→,�〉 be an IOMA. We define the usual language theoretic
concepts. A path π of M is a (possibly) infinite sequence of the form

π = s1 t1 μ1 α1 s2 t2 μ2 α2 . . . ,

where si ∈ S, ti ∈ R≥0, μi ∈→ ∪Psi
and αi ∈ L ∪ R≥0 for i = 1, 2, We

require that each finite path ends in a state. The sequence si ti μi αi si+1 means
that M resided ti time units in state si before moving to si+1 via αi using the
distribution μi. The length of a finite path, denoted |π|, is the number of input
and output actions occurring on it.

Note that measuring a single time point in continuous time results in proba-
bility zero. Hence, it is necessary to talk about time intervals instead of individ-
ual time values. An abstract path is a path, where each occurrence of single time
values ti is replaced by intervals Ii ⊆ R≥0. However, we limit our interested to
intervals of the form [0, t] with t ∈ R≥0. Consequently, any path can be replaced
with its abstract path by changing ti to [0, ti] or vice versa. This convention lets
us use both notions interchangeably.

The trace of a path tr (π) only records its visible behaviour, i.e. time and
input/output actions. It is given by the (possibly) infinite sequence of the form

σ = tr (π) = t1 a1 t2 a2 . . . ,

where ti ∈ R≥0 and ai ∈ Li∪Lo for i = 1, 2, The length of a trace is the length
of its corresponding paths. Note that a path fragment s1 t1 μ1 λ s2 t2 μ2 a s3 col-
lapses to (t1 + t2) a if λ is a Markovian action. Technically, Markovian actions
are just parameters for an exponential delay and therefore invisible. Similar to
abstract paths, an abstract trace is given, if all ti ∈ R≥0 of a trace are replaced by
intervals Ii ⊆ R≥0. Again, we limit ourselves to abstract traces only using inter-
vals of the form [0, t] with t ∈ R≥0. This enables us to use traces and abstract
traces interchangeably.

We denote the set finite paths Paths∗ (M) (Traces∗ (M) resp.) and abstract
paths as AbsPaths∗ (M) (AbsTraces∗ (M) resp.) and omit the asterisk to include
the infinite case. We use ctraces (M) to denote the set of traces ending in a
deadlock state. Lastly, let the operator act (π) return the action path of π by
removing all time values ti and distributions μi. For traces act (σ) returns visible
actions only.

Model-Based Testing of Probabilistic Systems with Stochastic Time 83

2.3 Traces and Their Probabilities

Similar to how the visible behaviour of a labelled transition system (LTS) is
given by its traces, the visible behaviour of an IOMA is given by its trace dis-
tributions. A trace distribution is a probability space, that assigns probabilities
to all traces. A trace of an LTS is obtained by removing all states and internal
actions from a given path. We do the same in the IOMA case: First we resolve all
nondeterministic choices via an adversary and then remove all invisible informa-
tion. The resolution of nondeterministic behaviour leads to a purely probabilistic
structure.

The mathematical framework for infinite abstract paths is technically more
involved, but completely standard [43]. A classical result in measure theory [11]
shows, that it is impossible to assign a probability to all sets of traces in non-
trivial scenarios. To illustrate: the probability of always rolling a 6 with a die
is 0, but the probability of rolling a 6 within the first 100 tries is positive. To
resolve this, we use a cone construction of sets of traces.

Adversaries and Path Probability. Similar to [40,43], adversaries form the
core concept of our framework. Given any finite piece of history leading to the
current state, an adversary returns a distribution over the available transitions.

Definition 2. An adversary A of an IOMA M = 〈S, s0, L,→,�〉 is a function

A : Paths∗ (M) −→ Distr (Distr (L × S) ∪ {⊥}) ,

such that for each finite path π only available distributions are scheduled, i.e.

∀π ∈ Paths∗ (M) : A (π) (μ) > 0, then (last (π) , μ) ∈→ .

The value A (π) (⊥) is the probability to interrupt/halt the process. An adversary
A halts on path π, if A (π) (⊥) = 1. We say an adversary is of length k ∈ N, if
it halts for all paths π with length greater or equal to k. We denote this set by
adv (M, k) and the set of all adversaries by adv (M) respectively.

An adversary resolves all nondeterministic choices of an IOMA making it pos-
sible to calculate the probability for each path via the probabilistic execution
function. Probabilistic executions assign the unique starting state probability 1
and each following transition either multiplies the probability that the sched-
uler assigned to an action or, if no action was scheduled, the probability of a
Markovian action taking place in a certain time interval.

Definition 3. Let A be an adversary of an IOMA M, then we define the proba-
bilistic execution function PA : AbsPaths (M) → [0, 1] inductively by PA (s0) = 1
and

PA (Π · Iαμs) = PA (Π) ·
{

A (π) (μ) · μ (α, s) if α ∈ L
∫

I
R (last (Π) , s) e−E(last(Π))tdt if α ∈ R≥0

,

where I = [0, T] ⊆ R≥0 and π is the corresponding path to the abstract path Π.

84 M. Gerhold and M. Stoelinga

The probability space of an adversary is constructed based on cones of paths
[40]. The cone Cπ of a path π contains all paths that have π as prefix. Given
A ∈ adv (M) , let ΩA := Paths (M) be the sample set and FA be the smallest
σ-field generated by the set of cones {CΠ ⊆ Paths (M) | Π ∈ AbsPaths∗ (M)}.
Standard measure theory arguments [11] ensure that PA induces a unique prob-
ability measure on the measurable space (ΩA,FA). Hence, an adversary induces
a probability space (ΩA,FA, PA) on a Markov automaton.

Trace Distributions. A trace distribution is obtained from (the probability
space of) an adversary, in the way a trace is obtained from a path; all invisible
behaviour is removed. Intuitively, the probability assigned to a set of abstract
traces X, is defined as the probability assigned to all abstract paths whose
abstract trace is an element of X.

Definition 4. The trace distribution D of an adversary A is the probability
space (ΩD,FD,PrD) given by ΩD = Traces (M), FD as the smallest σ-field
generated by the set of cones {Cσ ⊆ Traces (M) | σ ∈ AbsTraces∗ (M)} and PD

as the unique probability measure on FD, such that PD (X) = PA

(
tr−1 (X)

)
for

X ∈ FD

A trace distribution is of length k ∈ N, if it based on an adversary of length
k. We denote the set of all such trace distributions by Trd (M, k). The set of all
trace distributions is denoted by Trd (M). This naturally induces an equivalence
relation, denoted =TD , that equates two IOMAs, if they have the same set of
trace distributions.

3 Testing with Markov Automata

Model-based testing entails automatic test case generation, execution, and eval-
uation. We formalize the notion of offline tests and show how they can be gen-
erated in batch or on-the-fly. The functional correctness of a system under test
(SUT) is assessed upon test execution. To evaluate the probabilistic correct-
ness of the system, tests are executed multiple times and recorded in a sample.
The trace frequencies observed in a sample are then compared to their expecta-
tions. Consequently, an implementation is deemed correct, if these frequencies
are within certain confidence intervals given by the requirements.

3.1 Test Generation

Test Cases. We consider test cases as sets of traces based on an action signature
consisting of inputs and outputs (Li, Lo). These traces describe the possible
behaviour of a tester. In each state of a test, a tester may decide to stimulate
the SUT, observe its possible outputs or stop the process altogether.

Mathematically, we consider test cases as input-reactive and output-
generative probabilistic automata, i.e. Markov automata with �= ∅. This
enables us to model the choices of stimulating, observing or stopping proba-
bilistically. Note that, even in the non-probabilistic case, the test cases are often

Model-Based Testing of Probabilistic Systems with Stochastic Time 85

created probabilistically in practice. However, this is rarely ever supported in
theory. Thus, our definition fills a small gap here.

Definition 5. A test over an action signature (Li, Lo) is an IOMA of the form
t = (S, s0, Lo\ {δ} , Li ∪ {δ} , {τstop , τstim , τobs},→, ∅), such that

– t is internally deterministic and does not contain an infinite path;
– t is acyclic and connected;
– For every state s ∈ S, either

• enabled {s} = ∅
• enabled {s} = {τstop , τstim , τobs}
• enabled {s} = Li ∪ {δ}
• enabled {s} ⊆ Lo\ {δ}

A test for a specification IOMA M = 〈S, s0, L,→,�〉 is a test over its action
signature.

Note that the action signature of tests has switched input and output labels.
This is to allow for synchronisation in a parallel composition with an implemen-
tation IOMA.

Fig. 2. A regular test and a probabilistic test derived for the specification of Fig. 1.

Example 2. Fig. 2 shows two test cases for the specification IOMA in Fig. 1.
The probabilistic test case models the possible behaviour of a tester. Here, a
probabilistic choice is made with 1

3 on whether to stop, stimulate or wait for
responses of the system. Traces in the tests are labelled pass or fail according
to Definition 6.

Annotations. To state whether observed functional behaviour is deemed cor-
rect, each trace of a test is annotated with a verdict; pass for correct and fail for
erroneous behaviour. The classical ioco test case annotation [47] suffices here.
Informally, all traces of a test, that are also present in the specification, get
annotated as correct.

Definition 6. For a test t, a test annotation is a function a : ctraces (t) −→
{pass, fail}. A pair t̂ = (t, a) consisting of a test and an annotation is called
an annotated test. If t is a test for a specification S we define the annotation
aS,t : ctraces (t) −→ {pass, fail} by

86 M. Gerhold and M. Stoelinga

aS,t (σ) =

{
fail if ∃ � ∈ Traces (S) , a! ∈ Lδ

O : �a! � σ ∧ �a! /∈ Traces (S) ;
pass otherwise,

where � denotes the prefix relation for traces.

Algorithms. Algorithm 1 presents the batch test generation according to Defi-
nition 5. The inputs are a specification IOMA M and a history trace, which is
initially empty. At each step of the computation, the algorithm decides proba-
bilistically to stop with pσ,1, stimulate with pσ,2 or observe with pσ,3. The latter
two choices recursively call the batch-gen algorithm again with updated trace
history. Note that pσ,1 + pσ,2 + pσ,3 = 1.

Algorithm 2 describes the on-the-fly test case derivation for a given speci-
fication S, implementation I and upper limit for the test length n. It returns
a verdict within the first n steps. The verdict is fail if unexpected output was
encountered and pass otherwise. With probability pσ,1 the algorithm observes
the output of the implementation and with probability pσ,2 it stimulates it with
a new input. Note that pσ,1 + pσ,2 = 1.

Algorithm 1: Batch test generation

for Mar-ioco.

Input: Specification IOMA S and
history σ ∈ traces (S).

Output: A test case t for S.
1 Procedure batch(S, σ)
2 pσ,1·[true] →
3 return {τstop}
4 pσ,2·[true] →
5 result := {τobs}
6 forall b! ∈ Lo do:
7 if σb! ∈ traces (S) :
8 result := result ∪ {b!σ′ |

σ′ ∈ batch (S, σb!)
}

9 else:
10 result := result ∪ {b!}
11 end

12 end
13 return result
14 pσ,3·[σa? ∈ traces (S)] →
15 result := {τstim} ∪{

a?σ′ | σ′ ∈ batch (S, σa?)
}

16 forall b! ∈ LO do:
17 if σb! ∈ traces (S) :
18 result := result ∪ {b!σ′ |

σ′ ∈ batch (S, σb!)
}

19 else:
20 result := result ∪ {b!}
21 end

22 end

23 return result

Algorithm 2: On-the-fly test

case derivation for Mar-ioco.

Input: Specification IOMA S, an
implementation I and an
upper bound for the test
length n ∈ N.

Output: Verdict pass if Impl. was
ioco conform in the first
n steps and fail if not.

1 σ := ε
2 while |σ| < n do:
3 pσ,1·[true] →
4 observe next output b!

(possibly δ) of I
5 σ := σb!
6 if σ /∈ traces (S) :
7 return fail
8 pσ,2 · [σa? ∈ traces (S)] →
9 try:

10 atomic
11 stimulate I with a?
12 σ := σa?

13 end

14 catch an output b! occurs
before a? could be applied

15 σ := σb!
16 if σ /∈ traces (S) :
17 return fail
18

19 end

20 end
21 return pass

Model-Based Testing of Probabilistic Systems with Stochastic Time 87

Theorem 7. All test cases generated by Algorithm1 are test cases according to
Definition 5. All test cases generated by Algorithm2 assign the correct functional
verdict according to Definition 6.

3.2 Test Execution

Since discrete probabilistic choices and stochastic time delay are integral parts
of Markov automata, there is a twofold evaluation process of functional and sta-
tistical behaviour. While functional behaviour is assessed via the test annotation
as in classic ioco-test theory [50], we focus on describing the sampling process
to validate statistical correctness.

Sampling. In order to reason about probabilistic correctness, a single test exe-
cution is insufficient. Rather, we collect a sample via multiple test runs. The sam-
pling process consists of a push-button experiment in the sense of [34]. Assume
a black-box timed trace machine is given with inputs, time and action windows,
and a reset button as illustrated in Fig. 3.

At the beginning of the experiment, we set the parameters for sample length
k ∈ N, sample width m ∈ N and a level of significance α ∈ (0, 1). That is, we
choose the length of individual runs, how many runs should be observed and
a limit for the statistical error of first kind, i.e. the probability of rejecting a
correct implementation.

Fig. 3. Black box timed trace machine with input alphabet a0?, . . . , an?, reset button,
and time and action windows. Running the machine m times and observing traces of
length k yields a sample. The ID together with the trace and the respective number of
occurrences are noted down.

We assume that the timer resets to 0 after every visible action and that
two consecutive occurrences of the same action are distinguishable. An external
observer records each individual execution before the reset button is pressed
and the machine starts again. Thus, we collect m traces of length k, which are
summarized as a sample O.

During each run the black-box I is governed by a trace distribution D ∈
Trd (I). In order for any statistical reasoning to work, we assume that D is the
same in every run. Thus, the SUT chooses a trace distribution D and D chooses
a trace σ to execute.

Frequencies and expectations. We evaluate the deviation of a collected sam-
ple to the expected distribution. The latter is given for any underlying trace dis-
tribution D of the specification IOMA. Since the trace distribution is assumed

88 M. Gerhold and M. Stoelinga

to be the same for all runs, the expected probability to observe a trace σ is given
by E

D (σ) = PD (σ).
Depending on the accuracy of time measurement, it is unlikely to record the

exact same timed trace more than once. Therefore, we group traces in classes
based on the same visible action behaviour. For a given abstract trace σ, its class
Σσ is the set of all abstract traces � ∈ O, such that act (σ) = act (�). A sample
of length k and width m then induces a frequency measure, given by

freq (O) (σ) =
|Σσ|
m

Πk
i=1

|{� ∈ Σσ | I	
i ⊆ Iσ

i }|
|Σσ| ,

where I	
i denotes the i-th time interval of trace �, for any abstract trace σ. The

implementation is rejected for statistical reasons, should the deviation of the
measure freq (O) to E

D exceed a certain threshold based on α.

Acceptable outcomes. Conversely, we accept a sample O if freq (O) lies within
some distance, say rα, of the expected distribution E

D. Recall the definition of a
closed ball centred at x ∈ X with radius r as Br (x) = {y ∈ X | dist (x, y) ≤ r}.
All measures deviating at most by r from the expected distribution are contained
within the ball Br(ED), where dist (u, v) := sup

σ∈(R≥0×L)k | u (σ) − v (σ) | is

the total variation distance of measures.
To limit the error of accepting an erroneous sample, we choose the smallest

radius, such that the error of rejecting a correct sample is not greater than the
a priori chosen level of significance α ∈ (0, 1) by 2

rα := inf
{
r ∈ R>0 | PD

(
freq−1

(
Br

(
E
D

)))
> 1 − α

}
.

Definition 8. For k,m ∈ N and an IOMA M the acceptable outcomes under
a trace distribution D ∈ Trd (M, k) of significance level α ∈ (0, 1) are given by
the set

Obs (D,α, k,m) =
{

O ∈
(
(R≥0 × L)k

)m

| dist
(
freq (O) ,ED

) ≤ rα

}
.

The set of observations of M of significance level α ∈ (0, 1) is given by

Obs (M, α, k,m) =
⋃

D∈Trd(M,k)

Obs (D,α, k,m) .

The set of observations therefore guarantees two properties, reflecting the
error of false rejection and false acceptance respectively:

1. If a sample O was truthfully generated by M or a behaviourally equivalent
IOMA, then there is a trace distribution D such that PD (O) ≥ 1 − α; and

2. if a sample O was generated by a behaviourally different MA, then for all
trace distributions D′ we have PD′ (O) ≤ βm,

2 Note that freq (O) is not a bijection, but used here for ease of notation.

Model-Based Testing of Probabilistic Systems with Stochastic Time 89

where α is the predefined level of significance and βm is unknown but minimal by
construction. Note that βm → 0 as m → ∞, thus the error of falsely accepting
an erroneous sample decreases with increasing sample width. Here, behavioural
equivalence is induced by trace distribution equivalence, cf. Definition 4.

Goodness of fit. In order to state whether a given sample O is a truthful
observation of M, we need to find a trace distribution D ∈ Trd (M) such that
O ∈ Obs (D,m, k, α). It guarantees that the error of rejecting a truthful sample
is at most α. These sets are crucial for the soundness and completeness proofs.
However, they are computationally intractable to gauge for every D, since there
are uncountably many.

Instead, we use χ2 hypothesis testing to assure that a sample is acceptable.
The χ2 score is calculated as:

χ2 =
l∑

i=1

(
n (Σσi

) − mE
D (Σσi

)
)2

mED (Σσi
)

with l ≤ m. (1)

To find a trace distribution that gives a high likelihood to an observed sample,
we need to find D, such that χ2 < χ2

crit . The critical value depends on α and
the degrees of freedom in the statistical test. In this case the degrees of freedom
are given by the number of trace classes minus one, i.e. the probability of one
class is determined, if we know all others. The critical value for χ2 tests can be
calculated or universally looked up in a table.

By construction of adversaries, cf. Definition 2, we are interested in the reso-
lution of the nondeterministic choices. Consequently, (1) turns into a satisfaction
problem over a probability vector p in a rational function of two polynomials
f and g as f (p) /g (p). As [36] shows, optimization over rational functions and
inequality constraints is NP-hard.

Since (1) neglects time stamps, we need to assure that the recorded time
intervals correspond to the α confidence intervals of specified Markovian actions.
That is

∀λ ∈ R≥0 with (s, λ, s′) ∈� for s, s′ ∈ S : λ ∈
[

2
∑n

i=1 ti
χ2
2n (1 − α/2)

,
2
∑n

i=1 ti
χ2
2n (α/2)

]

,

The confidence intervals depend on a scheduler that solves the satisfaction prob-
lem.

3.3 Test Evaluation and Verdicts

An implementation should pass the test suite, if it passes the two verdicts for
functional behaviour and probabilistic behaviour. This is reflected in the math-
ematical verdicts.

Definition 9. Given a specification S = 〈S, s0, L,→,�〉, an annotated test t̂ for
S, k,m ∈ N where k is given by the trace length of t̂ and a level of significance
α ∈ (0, 1), we define the functional verdict as the function vfunc : IOMA −→
{pass, fail}, with

90 M. Gerhold and M. Stoelinga

vfunc (I) =

{
pass if ∀σ ∈ ctraces (I || t) ∩ ctraces (t) : a (σ) = pass
fail otherwise,

and the probabilistic verdict as the function vprob : IOMA −→ {pass, fail}, with

vprob (I) =

{
pass if ∃D ∈ Trd (S, k) : PD (Obs (I || t, α, k,m)) ≥ 1 − α

fail otherwise,

where || denotes the parallel composition. The overall verdict is pass, iff an imple-
mentation passes both verdicts.

A note on quiescence. A test case needs to assess if an SUT is allowed to be
unresponsive when output was expected [45]. Quiescence δ models the absence
of output for indefinite time. Therefore, it should be regarded with caution in
practical test scenarios. Earlier work assumes a global fixed time-out value set
by a user [6].

Time progress of Markov automata is exponentially delayed, hence, a global
time-out value has two disadvantages: 1. a time-out might occur, before a speci-
fied Markovian action takes place and 2. a global time-out value might unneces-
sarily prolong the test process. Therefore, our interest is to minimize the proba-
bility of erroneously declaring quiescence, while keeping the overall testing time
as low as possible.

Assume a level of significance α ∈ (0, 1) is given. Let λ be the exit rate of a
state s. Then the exit rate of s is a random variable T that is exponentially dis-
tributed with parameter λ. The probability, that a Markovian action is executed
before a state-specific maximum waiting time tmax expires should be greater
than (1 − α), i.e.

P (T < tmax) > 1 − α

Hence, choosing tmax > − log α
λ minimizes the probability of assigning quiescence,

when the SUT makes progress. Since the sum of exponential distributions is
not exponentially distributed, we resort to less sharper bounds for consecutive
Markovian transitions.

Example 3. Fig. 4 shows a simplistic specification of a file exchange protocol.
An exponential distribution is used to model the time delay between sending
a file and acknowledging its reception. Note that different expected delays are
associated with sending a small or a large file respectively.

After a file was send, there is a chance that it gets lost and we do not receive
the acknowledge! output. In this case the system is judged as quiescent, and
therefore faulty. However, since ν � λ a test should wait at least − log α

10 time
units in s1 and − log α in s2, to minimize the probability to erroneously judge
the system as quiescent, while also keeping the testing time as low as possible.

Regardless, for a sufficiently large sample size, an MBT-tool eventually erro-
neously observes quiescence. The right hand side of Fig. 4 therefore allows for
some amount of quiescence observations depending on α.

Model-Based Testing of Probabilistic Systems with Stochastic Time 91

Fig. 4. Specification of a file exchange protocol. Sending a small file is expected to take
less time. The right hand side models the possibility to erroneously declare quiescence
probabilistically.

4 Conformance, Soundness and Completeness

A fundamental result of our work is the correctness of our framework, phrased
as soundness and completeness. Soundness ensures that test cases assign the
correct verdict. Completeness postulates that the framework is powerful enough
to discover each deviation from the specification. In order to formulate these
properties, we require a formal notion of conformance that we define as the
Mar-ioco relation [18].

4.1 The Mar-Ioco Relation

The ioco relation as defined in [50] states, that an implementation conforms
to a specification, if it never provides any unspecified output or quiescence.
Mathematically, for two input-output transition systems I and S, with I input
enabled, we say I �ioco S, iff

∀σ ∈ Traces (S) : outI (σ) ⊆ outS (σ) .

This restricts the theory to functional behaviour in the case of classic transition
systems. To generalize ioco to Markov automata, we need two auxiliary concepts:

Trace Distribution Prefix. Given a trace distribution D of length k and a
trace distribution D′ of length greater or equal than k, we say D is a prefix
of D′, written D �k D′, if both assign the same probability to all traces of
length k.

Output Continuation. Given a trace distribution D of length k, its output
continuation is the set of trace distributions of length k+1 such that D �k D′,
assigning probability zero to traces of length k + 1 ending in inputs. This set
is denoted by outcontM (D).

92 M. Gerhold and M. Stoelinga

We are now able to define the conformance relation Mar-ioco. Intuitively, an
implementation is conforming, if the probability of every output trace can be
matched by the specification. This includes the three factors: 1. functional behav-
iour, 2. probabilistic behaviour and 3. stochastic timing.

Definition 10. Let I and S be IOMA with I input-enabled. We write
I �Mar−ioco S, if for all k ∈ N

∀D ∈ Trd (S, k) : outcontI (D) ⊆ outcontS (D) .

The Mar-ioco relation conservatively extends the ioco relation to Markov
automata. That is, both relations coincide for classic input output transition
systems (IOTSs).

Theorem 11. For two IOTSs I,S with I input enabled, we have

I �ioco S ⇐⇒ I �Mar−ioco S.

In ioco theory, the implementation is always assumed to be input enabled, to
model that a tester can give any input at any moment. If the specification is input
enabled too, ioco coincides with trace inclusion [50]. Assuming an input enabled
specification, our results show, that Mar-ioco coincides with trace distribution
inclusion. Moreover, the relation is transitive, just like ioco [50].

Theorem 12. Let A,B and C be IOMAs and let A and B be input enabled, then

– A �Mar−ioco B if and only if A �TD B.
– A �Mar−ioco B and B �Mar−ioco C imply A �Mar−ioco C.

4.2 Soundness and Completeness

Since the underlying model is probabilistic, there remains a degree of uncertainty
known as the errors of first and second kind. For MBT of probabilistic systems
this translates to the likelihood to reject a correct implementation, and to accept
an erroneous one respectively. Hence, a test suite can only be considered sound
and complete with a guaranteed (high) probability.

Soundness expresses for a given α ∈ (0, 1), that there is a (1 − α) probability,
that a correct system passes the test suite for sufficiently large sample width m.

Theorem 13. Each annotated test for an IOMA S is sound for every level of
significance α ∈ (0, 1) with respect to Mar-ioco.

Completeness of a test suite is inherently a theoretical result. Possible loops
and infinite behaviour in the SUT require a test suite of infinite size. Further,
there is the chance of accepting an erroneous implementation, i.e. the error of
second kind. However, the latter is bound from above and decreases with larger
sample size.

Theorem 14. The set of all annotated tests for an IOMA S is complete for
every level of significance α ∈ (0, 1) with respect to Mar-ioco.

Model-Based Testing of Probabilistic Systems with Stochastic Time 93

5 Experiments on the Bluetooth Device Discovery
Protocol

Bluetooth is a wireless communication technology standard [41] specifically
aimed at low-powered devices that communicate over short distances. To cope
with inference, the protocol uses a frequency hopping scheme in its initialisation
period. Before any communication can take place, Bluetooth devices organise
themselves into small networks called piconets consisting of one master and
up to seven slave devices.

To illustrate our framework, we study the discovery phase for one master
and one slave device. We give a high level overview of the protocol in this case.
The reader is referred to [15] for a detailed description on the protocol in a more
general setting.

To resolve possible interference, the master and slave device communicate on
a previously agreed sequence of 32 frequencies. Both devices have a 28-bit clock
that ticks every 312.5μs. Every two consecutive ticks, the master device sends
packages on two frequencies, followed by a two-tick listening period on the same
frequencies. It picks the broadcasting frequency according to the formula:

freq = [CLK 16−12 + off + (CLK 4−2,0 − CLK 16−12) mod 16] mod 32,

where CLK i−j marks the bits i, . . . , j of the clock and off ∈ N is an offset.
The master device chooses one of two tracks and switches to the other every
2.56s. Moreover, every 1.28s, i.e. every time the 12th bit of the clock changes, a
frequency is swapped between the two tracks. For simplicity, we chose off = 1 for
track one and off = 17 for track two, such that the two tracks initially comprise
frequencies 1, . . . , 16 and 17, . . . , 32.

Conversely, the slave device periodically scans on the 32 frequencies and is
either in a sleeping or listening state. To ensure the eventual connection, the
hopping rate of the slave device is much slower. Every 0.64s it listens to one
frequency in a window of 11.25ms and sleeps during the remaining time. It
cycles to the next frequency after 1.28s. This is enough for the master device to
broadcast on 16 different frequencies.

We implemented the protocol and two mutants in Java 7; 1. the master
mutant never switches between tracks one and two, therefore covering far less
different frequencies than the correct protocol in the same time and 2. the slave
mutant only listens for 5.65ms every 1.28s and therefore has a much longer
sleeping period.

Since the time to connect two devices is deterministic for any initial state, we
assumed that the clocks are desynchronized, i.e. the master sends out packages,
while the slave starts listening after a uniformly chosen random waiting time. The
expected waiting time 1/λ for an established connection is therefore estimated
as 1.325s, i.e. λ ≈ 0.755.

Figure 5a shows the high level specification of the protocol. The request
for both devices to synchronise is either followed by an acknowledgement or
a time-out. Note that the amount of allowed time-outs is part of the specifi-
cation and depends on α. A collected sample therefore consisted of the traces

94 M. Gerhold and M. Stoelinga

Fig. 5. High level specification of the Bluetooth device discovery protocol for one mas-
ter and one slave device. The time to establish a connection for a correct implementa-
tion and two mutants is compared to the assumed underlying exponential distribution
with parameter λ ≈ 0.755.

σ1 = 0 connect? t connected ! and σ2 = 0 connect? t δ. Figure 5b shows the cumu-
lative probability distribution to connect within T seconds of the assumed under-
lying distribution 1 − exp (−0.755T) and sample data collected for 103 runs of
the correct implementation and the two mutants.

To mitigate statistical deviations, we collected 103 samples of the size 103 to
calculate the average confidence intervals for α = 0.05. The confidence interval
of the correct implementation resulted in [0.721, 0.824], containing the assumed
value λ = 0.755 and was therefore judged as correct. The average connection
time of the master mutant was 30.2s with a confidence interval of [0.030, 0.034]
and was therefore rejected. Dividing the listening time of the slave mutant into
half had a less significant impact and gave a confidence interval of [0.781, 0.887].
It was consequently rejected with a small margin.

6 Conclusions and Future Work

We presented a sound and complete framework to test probabilistic systems with
sotchastic-time delays based on a model. We defined a conformance relation in
the ioco tradition called Mar-ioco pinning down precisely what correctness
means. Our algorithms provide test cases that are sound with respect to this
notion. Probabilistic correctness is assessed after a sampling process that counts
frequencies of traces and compares them to statistical requirements.

Future work should comprise the practical aspects of our work: more powerful
statistical methods facilitating efficient tool support. Lastly, we plan to apply
our framework to a case study of larger size.

Model-Based Testing of Probabilistic Systems with Stochastic Time 95

Acknowledgements. We would like to thank David Huistra for his aid on the case
study.

References

1. Beyer, M., Dulz, W.: Scenario-based statistical testing of quality of service require-
ments. In: Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and
Tools. LNCS, vol. 3466, pp. 152–173. Springer, Heidelberg (2005). doi:10.1007/
11495628 9

2. Bohnenkamp, H., Belinfante, A.: Timed testing with TorX. In: Fitzgerald, J.,
Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 173–188. Springer,
Heidelberg (2005). doi:10.1007/11526841 13

3. Bohnenkamp, H., Stoelinga, M.: Quantitative testing. In: Proceedings of the 8th
International Conference on Embedded Software, (EMSOFT), pp. 227–236. ACM
(2008)

4. Böhr, F.: Model-based statistical testing of embedded systems. In: IEEE 4th Inter-
national Conference on Software Testing, Verification and Validation, pp. 18–25
(2011)

5. Bozga, M., David, A. Hartmanns, H., Hermanns, H., Larsen, K.G., Legay, A.,
Tretmans, J.: State-of-the-art tools and techniques for quantitative modelling and
analysis of embedded systems. In: DATE, pp. 370–375 (2012)

6. Briones, L.B., Brinksma, E.: A test generation framework for quiescent real-time
systems. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
64–78. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31848-4 5

7. Briones, L.B., Brinksma, E., Stoelinga, M.: A semantic framework for test coverage.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 399–414. Springer,
Heidelberg (2006). doi:10.1007/11901914 30

8. Cheung, L., Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic
processes. J. ACM 54(6), 29:1–29:45 (2007). Article 29

9. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10366-7 17

10. Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilis-
tic processes. Inf. Comput. 154(2), 93–148 (1999)

11. Cohn, D.L.: Measure Theory. Birkhäuser, Basel (1980)
12. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems part I: stochastic

automata. Inf. Comput. 203(1), 1–38 (2005)
13. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222,

139–168 (2013)
14. Deng, Y., Hennessy, M., van Glabbeek, R.J., Morgan, C.: Characterising testing

preorders for finite probabilistic processes. CoRR (2008)
15. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A formal analysis of blue-

tooth device discovery. Int. J. Softw. Tools Technol. Transf. 8(6), 621–632 (2006)
16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous

time. In: IEEE 25th Annual Symposium on LICS, pp. 342–351 (2010)
17. Gerhold, M., Stoelinga, M.: Model-based testing of probabilistic systems. In:

Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 251–268.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 15

http://dx.doi.org/10.1007/11495628_9
http://dx.doi.org/10.1007/11495628_9
http://dx.doi.org/10.1007/11526841_13
http://dx.doi.org/10.1007/978-3-540-31848-4_5
http://dx.doi.org/10.1007/11901914_30
http://dx.doi.org/10.1007/978-3-642-10366-7_17
http://dx.doi.org/10.1007/978-3-662-49665-7_15

96 M. Gerhold and M. Stoelinga

18. Gerhold, M., Stoelinga, M.: Model-based testing of stochastic systems with IOCO
theory. In: A-TEST 2016, Proceedings of the 7th International Workshop on
Automating Test Case Design, Selection, and Evaluation, pp. 45–51. ACM (2016)

19. Guiotto, A., Acquaroli, B., Martelli, A.: MaTeLo: automated testing suite for soft-
ware validation. In: DASIA, vol. 532 (2003)

20. Hartmanns, A., Hermanns, H.: The Modest Toolset: An Integrated Environment
for Quantitative Modelling and Verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 51

21. Hermanns, H., Chains, I.M.: Interactive Markov Chains: and the Quest for Quan-
tified Quality. Springer, Heidelberg (2002)

22. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 77–117. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78917-8 3

23. Hierons, R.M., Merayo, M.G.: Mutation testing from probabilistic and stochastic
finite state machines. J. Syst. Softw. 82(11), 1804–1818 (2009)

24. Hierons, R.M., Núñez, M.: Testing probabilistic distributed systems. In: Hatcliff, J.,
Zucca, E. (eds.) FMOODS/FORTE -2010. LNCS, vol. 6117, pp. 63–77. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13464-7 6

25. Hierons, R.M., Núñez, M.: Implementation relations and probabilistic schedulers
in the distributed test architecture. J. Syst. Softw. (2017)

26. Hwang, I., Cavalli, A.R.: Testing a probabilistic FSM using interval estimation.
Comput. Netw. 54(7), 1108–1125 (2010)

27. Jegourel, C., Legay, A., Sedwards, S.: A Platform for High Performance Statis-
tical Model Checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28756-5 37

28. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Meth-
ods Syst. Des. 34(3), 238–304 (2009)

29. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS
2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). doi:10.1007/
3-540-46029-2 13

30. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31848-4 6

31. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing, pp. 344–352.
ACM Press (1989)

32. Lohrey, M., D’Argenio, P.R., Hermanns, H.: Axiomatising Divergence. In: Wid-
mayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.)
ICALP 2002. LNCS, vol. 2380. Springer, Heidelberg (2002)

33. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. Wiley, Hoboken (1994)

34. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)
35. Mostowski, W., Poll, E., Schmaltz, J., Tretmans, J., Wichers Schreur, R.: Model-

based testing of electronic passports. In: Alpuente, M., Cook, B., Joubert, C. (eds.)
FMICS 2009. LNCS, vol. 5825, pp. 207–209. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04570-7 19

36. Nie, J., Demmel, J., Gu, M.: Global minimization of rational functions and the
nearest GCDs. J. Glob. Optim. 40(4), 697–718 (2008)

http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-540-78917-8_3
http://dx.doi.org/10.1007/978-3-642-13464-7_6
http://dx.doi.org/10.1007/978-3-642-28756-5_37
http://dx.doi.org/10.1007/978-3-642-28756-5_37
http://dx.doi.org/10.1007/3-540-46029-2_13
http://dx.doi.org/10.1007/3-540-46029-2_13
http://dx.doi.org/10.1007/978-3-540-31848-4_6
http://dx.doi.org/10.1007/978-3-642-04570-7_19
http://dx.doi.org/10.1007/978-3-642-04570-7_19

Model-Based Testing of Probabilistic Systems with Stochastic Time 97

37. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (2014)

38. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72522-0 6

39. Russell, N., Moore, R.: Explicit modelling of state occupancy in hidden markov
models for automatic speech recognition. In: IEEE International Conference on
Acoustics, Speech, and Signal Processing ICASSP, vol. 10, pp. 5–8 (1985)

40. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Cambridge, MA, USA (1995)

41. B. SIG. Bluetooth Specification, version 1.2 (2003). www.bluetooth.com
42. Song, L., Zhang, L., Godskesen, J.C., Hermanns, H., Eisentraut, C.: Late weak

bisimulation for Markov automata. CoRR, abs/1202.4116 (2012)
43. Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric

systems. Ph.D. thesis, Radboud University of Nijmegen (2002)
44. Stoelinga, M., Vaandrager, F.: Root contention in IEEE 1394. In: Katoen, J.-P.

(ed.) ARTS 1999. LNCS, vol. 1601, pp. 53–74. Springer, Heidelberg (1999). doi:10.
1007/3-540-48778-6 4

45. Stokkink, W.G.J., Timmer, M., Stoelinga, M.I.A.: Divergent quiescent transition
systems. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 214–231.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38916-0 13

46. Thrun, S.: Probabilistic robotics. Commun. ACM 45(3), 52–57 (2002)
47. Timmer, M., Brinksma, H., Stoelinga, M., Testing, M.-B., Software, I., Safety, S.:

Specification and verification, Volume 30 of NATO Science for Peace and Security,
pp. 1–32. IOS Press (2011)

48. Timmer, M., Katoen, J.-P., Pol, J., Stoelinga, M.I.A.: Efficient modelling and
generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32940-1 26

49. Timmer, M., van de Pol, J., Stoelinga, M.I.A.: Confluence reduction for Markov
automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol.
8053, pp. 243–257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40229-6 17

50. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Softw. - Concepts Tools 17(3), 103–120 (1996)

51. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nach-
manson, L.: Model-based testing of object-oriented reactive systems with spec
explorer. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and
Testing. LNCS, vol. 4949, pp. 39–76. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78917-8 2

52. Whittaker, J.A., Rekab, K., Thomason, M.G.: A Markov chain model for predicting
the reliability of multi-build software. Inf. Softw. Technol. 42(12), 889–894 (2000)

http://dx.doi.org/10.1007/978-3-540-72522-0_6
www.bluetooth.com
http://dx.doi.org/10.1007/3-540-48778-6_4
http://dx.doi.org/10.1007/3-540-48778-6_4
http://dx.doi.org/10.1007/978-3-642-38916-0_13
http://dx.doi.org/10.1007/978-3-642-32940-1_26
http://dx.doi.org/10.1007/978-3-642-32940-1_26
http://dx.doi.org/10.1007/978-3-642-40229-6_17
http://dx.doi.org/10.1007/978-3-540-78917-8_2
http://dx.doi.org/10.1007/978-3-540-78917-8_2

	Model-Based Testing of Probabilistic Systems with Stochastic Time
	1 Introduction
	2 Markov Automata
	2.1 The Markov Automaton Model
	2.2 Paths and Traces
	2.3 Traces and Their Probabilities

	3 Testing with Markov Automata
	3.1 Test Generation
	3.2 Test Execution
	3.3 Test Evaluation and Verdicts

	4 Conformance, Soundness and Completeness
	4.1 The Mar-Ioco Relation
	4.2 Soundness and Completeness

	5 Experiments on the Bluetooth Device Discovery Protocol
	6 Conclusions and Future Work
	References

