119 research outputs found

    The Escape Problem in a Classical Field Theory With Two Coupled Fields

    Full text link
    We introduce and analyze a system of two coupled partial differential equations with external noise. The equations are constructed to model transitions of monovalent metallic nanowires with non-axisymmetric intermediate or end states, but also have more general applicability. They provide a rare example of a system for which an exact solution of nonuniform stationary states can be found. We find a transition in activation behavior as the interval length on which the fields are defined is varied. We discuss several applications to physical problems.Comment: 24 page

    The number of transmission channels through a single-molecule junction

    Full text link
    We calculate transmission eigenvalue distributions for Pt-benzene-Pt and Pt-butadiene-Pt junctions using realistic state-of-the-art many-body techniques. An effective field theory of interacting π\pi-electrons is used to include screening and van der Waals interactions with the metal electrodes. We find that the number of dominant transmission channels in a molecular junction is equal to the degeneracy of the molecular orbital closest to the metal Fermi level.Comment: 9 pages, 8 figure

    Expected accuracy of tilt measurements on a novel hexapod-based Digital zenith camera system: A Monte-Carlo simulation study

    Get PDF
    Digital zenith camera systems (DZCS) are dedicated astronomical-geodetic measurement systems for the observation of the direction of the plumb line. A DZCS key component is a pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation with precision tilt meters in opposite faces (180° instrumental rotation), and application of rigorous tilt reduction models. A novel concept proposes the development of a hexapod (Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 30°–60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of the impact of the rotation angle between the two faces on the accuracy of the tilt measurement. The goal of the present study is the investigation of the expected accuracy of tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in order to derive accuracy estimates for the tilt determination as a function of several input parameters, and the results are validated against analytical error propagation.As the main result of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. This provides supporting evidence for the feasibility of such a novel instrumentation. The outcomes of our study are not only relevant to the field of DZCS, but also to all other types of instruments where the instrumental tilt must be corrected. Examples include electronic theodolites or total stations, gravity meters, and other hexapod-based telescopes

    Indirect evaluation of Mars Gravity Model 2011 using a replication experiment on Earth

    Get PDF
    Curtin University’s Mars Gravity Model 2011 (MGM2011) is a high-resolution composite set of gravity field functionals that uses topography-implied gravity effects at medium- and short-scales (~125 km to ~3 km) to augment the space-collected MRO110B2 gravity model. Ground-truth gravity observations that could be used for direct validation of MGM2011 are not available on Mars’s surface. To indirectly evaluate MGM2011 and its modelling principles, an as-close-as-possible replication of the MGM2011 modelling approach was performed on Earth as the planetary body with most detailed gravity field knowledge available. Comparisons among six ground-truth data sets (gravity disturbances, quasigeoid undulations and vertical deflections) and the MGM2011-replication over Europe and North America show unanimously that topography-implied gravity information improves upon space-collected gravity models over areas with rugged terrain. The improvements are ~55% and ~67% for gravity disturbances, ~12% and ~47% for quasigeoid undulations, and ~30% to ~50% for vertical deflections. Given that the correlation between space-collected gravity and topography is higher for Mars than Earth at spatial scales of a few 100 km, topography-implied gravity effects are more dominant on Mars. It is therefore reasonable to infer that the MGM2011 modelling approach is suitable, offering an improvement over space-collected Martian gravity field models

    Metastability Driven by Soft Quantum Fluctuation Modes

    Full text link
    The semiclassical Euclidean path integral method is applied to compute the low temperature quantum decay rate for a particle placed in the metastable minimum of a cubic potential in a {\it finite} time theory. The classical path, which makes a saddle for the action, is derived in terms of Jacobian elliptic functions whose periodicity establishes the one-to-one correspondence between energy of the classical motion and temperature (inverse imaginary time) of the system. The quantum fluctuation contribution has been computed through the theory of the functional determinants for periodic boundary conditions. The decay rate shows a peculiar temperature dependence mainly due to the softening of the low lying quantum fluctuation eigenvalues. The latter are determined by solving the Lam\`{e} equation which governs the fluctuation spectrum around the time dependent classical bounce.Comment: Journal of Low Temperature Physics (2008) Publisher: Springer Netherland

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link
    • …
    corecore