96 research outputs found

    A study to explore the professional conceptualization and challenges of self-management in children and adolescents with lymphedema

    Get PDF
    Background: The aim of this study was to explore the professional experience of caring for children and adolescents with lymphedema and to explore the way in which they understand and implement self-management strategies and the influence of their own self-efficacy beliefs on this process. Methods and Results: Participants were recruited during an educational camp for children with lymphedema. Three individual semistructured focus groups were undertaken in English, French, and Italian with simultaneous translation. Data were analyzed using interpretative phenomenological analysis (IPA). Analysis of the data produced three superordinate themes: professional concepts of self-management, professional practice, and redefining the cornerstone of lymphedema care. An additional seven subthemes were as follows: readiness to self-management, professional perspectives on self-management, defining success and treatment failure, emotional burden, traditional views on complex decongestive therapy, new ways to practice, and sole practitioner versus multidisciplinary teams. Conclusions: The purpose of the study was to explore the challenges professionals face when introducing self-management to children and adolescents with lymphedema and their parents and to explore their own sense of self-efficacy in approaching this. The research allowed in-depth discussion about the ways they conceptualize self-management and faced professional challenges. The research highlighted the need to define what is considered an acceptable outcome within a complex and uncertain condition and the self-management strategies that are needed to support this

    SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair

    Get PDF
    Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini. Here we show that TDP1 is a substrate for modification by the small ubiquitin-like modifier SUMO. We purify SUMOylated TDP1 from mammalian cells and identify the SUMOylation site as lysine 111. While SUMOylation exhibits no impact on TDP1 catalytic activity, it promotes its accumulation at sites of DNA damage. A TDP1 SUMOylation-deficient mutant displays a reduced rate of repair of chromosomal single-strand breaks arising from transcription-associated topoisomerase 1 activity or oxidative stress. These data identify a role for SUMO during single-strand break repair, and suggest a mechanism for protecting the nervous system from genotoxic stress

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Involvement of circulating CEA in liver metastases from colorectal cancers re-examined in a new experimental model

    Get PDF
    Both experimental and clinical data show evidence of a correlation between elevated blood levels of carcinoembryonic antigen (CEA) and the development of liver metastases from colorectal carcinomas. However, a cause-effect relationship between these two observations has not been demonstrated. For this reason, we developed a new experimental model to evaluate the possible role of circulating CEA in the facilitation of liver metastases. A CEA-negative subclone from the human colon carcinoma cell line CO115 was transfected either with CEA-cDNA truncated at its 3' end by the deletion of 78 base pairs leading to the synthesis of a secreted form of CEA or with a full-length CEA-cDNA leading to the synthesis of the entire CEA molecule linked to the cell surface by a GPI anchor. Transfectants were selected either for their high CEA secretion (clone CO115-2C2 secreting up to 13 microg CEA per 10(6) cells within 72 h) or for their high CEA membrane expression (clone CO115-5F12 expressing up to 1 x 10(6) CEA molecules per cell). When grafted subcutaneously, CO115-2C2 cells gave rise to circulating CEA levels that were directly related to the tumour volume (from 100 to 1000 ng ml(-1) for tumours ranging from 100 to 1000 mm3), whereas no circulating CEA was detectable in CO115 and CO115-5F12 tumour-bearing mice. Three series of nude mice bearing a subcutaneous xenograft from either clone CO115-2C2 or the CO115-5F12 transfectant, or an untransfected CO115 xenograft, were further challenged for induction of experimental liver metastases by intrasplenic injection of three different CEA-expressing human colorectal carcinoma cell lines (LoVo, LS174T or CO112). The number and size of the liver metastases were shown to be independent of the circulating CEA levels induced by the subcutaneous CEA secreting clone (CO115-2C2), but they were directly related to the metastatic properties of the intrasplenically injected tumour cells

    A Newly Identified Essential Complex, Dre2-Tah18, Controls Mitochondria Integrity and Cell Death after Oxidative Stress in Yeast

    Get PDF
    A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H2O2, GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex

    Nucleolin Inhibits G4 Oligonucleotide Unwinding by Werner Helicase

    Get PDF
    The Werner protein (WRNp), a member of the RecQ helicase family, is strongly associated with the nucleolus, as is nucleolin (NCL), an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible functional significance in DNA damage repair.Here we report that WRNp interacts with the RNA-binding protein, NCL, based on immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS cells with 15 µM of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea, Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays and electrophoretic mobility shift assays (EMSA).These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and can participate in the DNA repair processes

    Standardized and reproducible methodology for the comprehensive and systematic assessment of surgical resection margins during breast-conserving surgery for invasive breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The primary goal of breast-conserving surgery (BCS) is to completely excise the tumor and achieve "adequate" or "negative" surgical resection margins while maintaining an acceptable level of postoperative cosmetic outcome. Nevertheless, precise determination of the adequacy of BCS has long been debated. In this regard, the aim of the current paper was to describe a standardized and reproducible methodology for comprehensive and systematic assessment of surgical resection margins during BCS.</p> <p>Methods</p> <p>Retrospective analysis of 204 BCS procedures performed for invasive breast cancer from August 2003 to June 2007, in which patients underwent a standard BCS resection and systematic sampling of nine standardized re-resection margins (superior, superior-medial, superior-lateral, medial, lateral, inferior, inferior-medial, inferior-lateral, and deep-posterior). Multiple variables (including patient, tumor, specimen, and follow-up variables) were evaluated.</p> <p>Results</p> <p>6.4% (13/204) of patients had positive BCS specimen margins (defined as tumor at inked edge of BCS specimen) and 4.4% (9/204) of patients had close margins (defined as tumor within 1 mm or less of inked edge but not at inked edge of BCS specimen). 11.8% (24/204) of patients had at least one re-resection margin containing additional disease, independent of the status of the BCS specimen margins. 7.1% (13/182) of patients with negative BCS specimen margins (defined as no tumor cells seen within 1 mm or less of inked edge of BCS specimen) had at least one re-resection margin containing additional disease. Thus, 54.2% (13/24) of patients with additional disease in a re-resection margin would not have been recognized by a standard BCS procedure alone (P < 0.001). The nine standardized resection margins represented only 26.8% of the volume of the BCS specimen and 32.6% of the surface area of the BCS specimen.</p> <p>Conclusion</p> <p>Our methodology accurately assesses the adequacy of surgical resection margins for determination of which individuals may need further resection to the affected breast in order to minimize the potential risk of local recurrence while attempting to limit the volume of additional breast tissue excised, as well as to determine which individuals are not realistically amendable to BCS and instead need a completion mastectomy to successfully remove multifocal disease.</p

    Chemotherapy, tamoxifen, and breast cancer: reconciling differences.

    No full text
    corecore