8 research outputs found

    Management zone delineation using a modified watershed algorithm

    Get PDF
    Le zonage intra-parcellaire est une méthode couramment utilisée pour gérer la variabilité intra-parcellaire. Ce concept consiste à partitionner une parcelle en zones de management selon une ou plusieurs caractéristiques du sol et/ou du couvert végétal de cette parcelle. Cet article propose une méthode de zonage originale, basée sur l'utilisation d'une méthode de segmentation d'image puissante et rapide : l'algorithme de ligne de partage des eaux. Cet algorithme d'analyse d'image a été adapté aux spécificités de l'agriculture de précision. Les performances de notre méthodes ont été testées sur des cartes biophysiques haute résolution de plusieurs champs de blé situés en Bourgogne. / Site-specific management (SSM) is a common way to manage within-field variability. This concept divides fields into site-specific management zones (SSMZ) according to one or several soil or crop characteristics. This paper proposes an original methodology for SSMZ delineation which is able to manage different kinds of crop and/or soil images using a powerful segmentation tool: the watershed algorithm. This image analysis algorithm was adapted to the specific constraints of precision agriculture. The algorithm was tested on high-resolution bio-physical images of a set of fields in France.ZONAGE;PARCELLE;TELEDETECTION;BLE;SEGMENTATION D'IMAGE;AGRICULTURE DE PRECISION;FRANCE;BOURGOGNE;PRECISION AGRICULTURE;MANAGEMENT ZONES;REMOTE SENSING;IMAGE ANALYSIS;WATERSHED SEGMENTATION

    Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics

    Full text link
    Leaf area index (LAI) is a key variable for the understanding of several eco-physiological processes within a vegetation canopy. The LAI could thus provide vital information for the management of the environment and agricultural practices when estimated continuously over time and space thanks to remote sensing sensors. This study proposed a method to estimate LAI spatial and temporal variation based on multi-temporal remote sensing observations processed using a simple semi-mechanistic canopy structure dynamic model (CSDM) coupled with a radiative transfer model (RTM). The CSDM described the temporal evolution of the LAI as function of the accumulated daily air temperature as measured from classical ground meteorological stations. The retrieval performances were evaluated for two different data sets: first, a data set simulated by the RTM but taking into account realistic measurement conditions and uncertainties resulting from different error sources; second, an experimental data set acquired over maize crops the Blue Earth City area (USA) in 1998. Results showed that the proposed approach improved significantly the retrieval performances for LAI mainly by smoothing the residual errors associated to each individual observation. In addition it provides a way to describe in a continuous manner the LAI time course from a limited number of observations during the growth cycle

    Geoland2 – Towards an operational GMES Land Monitoring Core Service: the Biogeophysical Parameter Core Mapping Service

    No full text
    International audienceThe European GMES initiative provides a political framework for future implementation of Service Centres related to environmental applications. The FP7/geoland2 project is the last brick towards the implementation of fully mature GMES Land Services, consisting of Core Mapping Services (CMS) and Core Information Services (CIS). Its goal is to build, validate and demonstrate operational processing lines and products on a user-driven basis. The Bio-geophysical Parameter (BioPar) CMS aims at setting-up operational infrastructures for providing regional, continental, and global Essential Climate Variables. The research, development, production, and validation activities of the BioPar CMS are presented with a special focus on the biophysical products available to the institutional users, and to the scientific community
    corecore