14,980 research outputs found
Electronic friction and liquid-flow-induced voltage in nanotubes
A recent exciting experiment by Ghosh et al. reported that the flow of an
ion-containing liquid such as water through bundles of single-walled carbon
nanotubes induces a voltage in the nanotubes that grows logarithmically with
the flow velocity v0. We propose an explanation for this observation. Assuming
that the liquid molecules nearest the nanotube form a 2D solid-like monolayer
pinned through the adsorbed ions to the nanotubes, the monolayer sliding will
occur by elastic loading followed by local yield (stick-slip). The drifting
adsorbed ions produce a voltage in the nanotube through electronic friction
against free electrons inside the nanotube. Thermally excited jumps over
force-biased barriers, well-known in stick-slip, can explain the logarithmic
voltage growth with flow velocity. We estimate the short circuit current and
the internal resistance of the nanotube voltage generator.Comment: 8 pages, 3 figures; published on PRB
(http://link.aps.org/abstract/PRB/v69/e235410) and on the Virtual Journal of
Nanoscale Science and Technology (http://www.vjnano.org, July 14, 2002, Vol.
10, Iss. 2
Evidence for the absence of regularization corrections to the partial-wave renormalization procedure in one-loop self energy calculations in external fields
The equivalence of the covariant renormalization and the partial-wave
renormaliz ation (PWR) approach is proven explicitly for the one-loop
self-energy correction (SE) of a bound electron state in the presence of
external perturbation potentials. No spurious correctio n terms to the
noncovariant PWR scheme are generated for Coulomb-type screening potentia ls
and for external magnetic fields. It is shown that in numerical calculations of
the SE with Coulombic perturbation potential spurious terms result from an
improper treatment of the unphysical high-energy contribution. A method for
performing the PWR utilizing the relativistic B-spline approach for the
construction of the Dirac spectrum in external magnetic fields is proposed.
This method is applied for calculating QED corrections to the bound-electron
-factor in H-like ions. Within the level of accuracy of about 0.1% no
spurious terms are generated in numerical calculations of the SE in magnetic
fields.Comment: 22 pages, LaTeX, 1 figur
Fluid flow at the interface between elastic solids with randomly rough surfaces
I study fluid flow at the interface between elastic solids with randomly
rough surfaces. I use the contact mechanics model of Persson to take into
account the elastic interaction between the solid walls and the Bruggeman
effective medium theory to account for the influence of the disorder on the
fluid flow. I calculate the flow tensor which determines the pressure flow
factor and, e.g., the leak-rate of static seals. I show how the perturbation
treatment of Tripp can be extended to arbitrary order in the ratio between the
root-mean-square roughness amplitude and the average interfacial surface
separation. I introduce a matrix D(Zeta), determined by the surface roughness
power spectrum, which can be used to describe the anisotropy of the surface at
any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta)
(generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure
Dynamics of Capital Formation, Capacity Constraints and Trade Patterns in a Multisectoral Model
Lattice thermal conductivity of TiZrHfNiSn half-Heusler alloys calculated from first principles: Key role of nature of phonon modes
In spite of their relatively high lattice thermal conductivity
, the XNiSn (X=Ti, Zr or Hf) half-Heusler compounds are good
thermoelectric materials. Previous studies have shown that can
be reduced by sublattice-alloying on the X-site. To cast light on how the alloy
composition affects , we study this system using the phonon
Boltzmann-transport equation within the relaxation time approximation in
conjunction with density functional theory.The effect of alloying through
mass-disorder scattering is explored using the virtual crystal approximation to
screen the entire ternary TiZrHfNiSn phase diagram. The
lowest lattice thermal conductivity is found for the TiHfNiSn
compositions; in particular, there is a shallow minimum centered at
TiHfNiSn with taking values between 3.2 and 4.1 W/mK
when the Ti content varies between 20 and 80\%. Interestingly, the overall
behavior of mass-disorder scattering in this system can only be understood from
a combination of the nature of the phonon modes and the magnitude of the mass
variance. Mass-disorder scattering is not effective at scattering acoustic
phonons of low energy. By using a simple model of grain boundary scattering, we
find that nanostructuring these compounds can scatter such phonons effectively
and thus further reduce the lattice thermal conductivity; for instance,
TiHfNiSn with a grain size of nm experiences a 42\%
reduction of compared to that of the single crystal
Velocity weakening and possibility of aftershocks in nanofriction experiments
We study the frictional behavior of small contacts as those realized in the
atomic force microscope and other experimental setups, in the framework of
generalized Prandtl-Tomlinson models. Particular attention is paid to
mechanisms that generate velocity weakening, namely a decreasing average
friction force with the relative sliding velocity.The mechanisms studied model
the possibility of viscous relaxation, or aging effects in the contact. It is
found that, in addition to producing velocity weakening, these mechanisms can
also produce aftershocks at sufficiently low sliding velocities. This provides
a remarkable analogy at the microscale, of friction properties at the
macroscale, where aftershocks and velocity weakening are two fundamental
features of seismic phenomena.Comment: 8 pages, 7 figure
- …
