14,980 research outputs found

    Electronic friction and liquid-flow-induced voltage in nanotubes

    Get PDF
    A recent exciting experiment by Ghosh et al. reported that the flow of an ion-containing liquid such as water through bundles of single-walled carbon nanotubes induces a voltage in the nanotubes that grows logarithmically with the flow velocity v0. We propose an explanation for this observation. Assuming that the liquid molecules nearest the nanotube form a 2D solid-like monolayer pinned through the adsorbed ions to the nanotubes, the monolayer sliding will occur by elastic loading followed by local yield (stick-slip). The drifting adsorbed ions produce a voltage in the nanotube through electronic friction against free electrons inside the nanotube. Thermally excited jumps over force-biased barriers, well-known in stick-slip, can explain the logarithmic voltage growth with flow velocity. We estimate the short circuit current and the internal resistance of the nanotube voltage generator.Comment: 8 pages, 3 figures; published on PRB (http://link.aps.org/abstract/PRB/v69/e235410) and on the Virtual Journal of Nanoscale Science and Technology (http://www.vjnano.org, July 14, 2002, Vol. 10, Iss. 2

    Evidence for the absence of regularization corrections to the partial-wave renormalization procedure in one-loop self energy calculations in external fields

    Full text link
    The equivalence of the covariant renormalization and the partial-wave renormaliz ation (PWR) approach is proven explicitly for the one-loop self-energy correction (SE) of a bound electron state in the presence of external perturbation potentials. No spurious correctio n terms to the noncovariant PWR scheme are generated for Coulomb-type screening potentia ls and for external magnetic fields. It is shown that in numerical calculations of the SE with Coulombic perturbation potential spurious terms result from an improper treatment of the unphysical high-energy contribution. A method for performing the PWR utilizing the relativistic B-spline approach for the construction of the Dirac spectrum in external magnetic fields is proposed. This method is applied for calculating QED corrections to the bound-electron gg-factor in H-like ions. Within the level of accuracy of about 0.1% no spurious terms are generated in numerical calculations of the SE in magnetic fields.Comment: 22 pages, LaTeX, 1 figur

    Fluid flow at the interface between elastic solids with randomly rough surfaces

    Full text link
    I study fluid flow at the interface between elastic solids with randomly rough surfaces. I use the contact mechanics model of Persson to take into account the elastic interaction between the solid walls and the Bruggeman effective medium theory to account for the influence of the disorder on the fluid flow. I calculate the flow tensor which determines the pressure flow factor and, e.g., the leak-rate of static seals. I show how the perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the root-mean-square roughness amplitude and the average interfacial surface separation. I introduce a matrix D(Zeta), determined by the surface roughness power spectrum, which can be used to describe the anisotropy of the surface at any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta) (generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure

    Lattice thermal conductivity of Tix_xZry_yHf1xy_{1-x-y}NiSn half-Heusler alloys calculated from first principles: Key role of nature of phonon modes

    Get PDF
    In spite of their relatively high lattice thermal conductivity κ\kappa_{\ell}, the XNiSn (X=Ti, Zr or Hf) half-Heusler compounds are good thermoelectric materials. Previous studies have shown that κ\kappa_{\ell} can be reduced by sublattice-alloying on the X-site. To cast light on how the alloy composition affects κ\kappa_\ell, we study this system using the phonon Boltzmann-transport equation within the relaxation time approximation in conjunction with density functional theory.The effect of alloying through mass-disorder scattering is explored using the virtual crystal approximation to screen the entire ternary Tix_xZry_{y}Hf1xy_{1-x-y}NiSn phase diagram. The lowest lattice thermal conductivity is found for the Tix_xHf1x_{1-x}NiSn compositions; in particular, there is a shallow minimum centered at Ti0.5_{0.5}Hf0.5_{0.5}NiSn with κl\kappa_l taking values between 3.2 and 4.1 W/mK when the Ti content varies between 20 and 80\%. Interestingly, the overall behavior of mass-disorder scattering in this system can only be understood from a combination of the nature of the phonon modes and the magnitude of the mass variance. Mass-disorder scattering is not effective at scattering acoustic phonons of low energy. By using a simple model of grain boundary scattering, we find that nanostructuring these compounds can scatter such phonons effectively and thus further reduce the lattice thermal conductivity; for instance, Ti0.5_{0.5}Hf0.5_{0.5}NiSn with a grain size of L=100L= 100 nm experiences a 42\% reduction of κ\kappa_{\ell} compared to that of the single crystal

    Velocity weakening and possibility of aftershocks in nanofriction experiments

    Full text link
    We study the frictional behavior of small contacts as those realized in the atomic force microscope and other experimental setups, in the framework of generalized Prandtl-Tomlinson models. Particular attention is paid to mechanisms that generate velocity weakening, namely a decreasing average friction force with the relative sliding velocity.The mechanisms studied model the possibility of viscous relaxation, or aging effects in the contact. It is found that, in addition to producing velocity weakening, these mechanisms can also produce aftershocks at sufficiently low sliding velocities. This provides a remarkable analogy at the microscale, of friction properties at the macroscale, where aftershocks and velocity weakening are two fundamental features of seismic phenomena.Comment: 8 pages, 7 figure
    corecore