254 research outputs found

    Host-Pathogen Interactions Made Transparent with the Zebrafish Model

    Get PDF
    The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening

    ETHNOMEDICINAL STUDY OF UBAR KAMPUNG FOR DIABETES MELLITUS: INDIGENOUS KNOWLEDGE, BELIEF, AND PRACTICE OF MEDICINAL, AROMATIC, AND COSMETIC (MAC) PLANTS IN SUNDA REGION, WEST JAVA, INDONESIA

    Get PDF
    Objective: Over the past several decades, ethnobotany and ethnomedicine have been considered as a more appropriate interdisciplinary approach to drug discovery involving interdisciplinary collaboration. Several studies on ethnomedicine and ethnobotany worldwide have shown that diabetes mellitus has been recognised by the traditional healer as a pathological condition which can be treated with specific medicinal plants. The starting point in an ethno-directed search for anti-diabetic plants is the identification of plant species used by local healers for this purpose. This study aims to document medicinal plants used by local communities for the treatment of diabetes mellitus. Methods: This ethnographical study highlights the emic point of the local people to documents knowledge, belief, and practice of ubar kampung in Sunda Region. Results: The results of this study reveals 20 of most frequently used of medicinal, aromatic, and cosmetic plants by people in Sundanese community. The majority of plant species used for the treatment of diabetes mellitus belong to the families of Asteraceae (2 species), Lauraceae (2 species), and Liliaceae (2 species). Conclusion: Most of the medicinal plants reported in the research area are already publicly acknowledged for their medicinal properties, indicating that their pharmacological activities have been studied in different areas. Medicinal plants such Syzygium polyanthum, Moringa oleifera, Swietenia mahagoni, Allium sativum, and Cinnammomum burmanni have been widely used in several regions by various ethnic groups. Leaves are the most frequently used plant part. In general, infusion and decoction are the most common plant preparation methods in the research area

    RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a cxcl11 Chemokine Gene as a Marker of Macrophage Polarization During Mycobacterial Infection

    Get PDF
    Macrophages are phagocytic cells from the innate immune system, which forms the first line of host defense against invading pathogens. These highly dynamic immune cells can adopt specific functional phenotypes, with the pro-inflammatory M1 and anti-inflammatory M2 polarization states as the two extremes. Recently, the process of macrophage polarization during inflammation has been visualized by real time imaging in larvae of the zebrafish. This model organism has also become widely used to study macrophage responses to microbial pathogens. To support the increasing use of zebrafish in macrophage biology, we set out to determine the complete transcriptome of zebrafish larval macrophages. We studied the specificity of the macrophage signature compared with other larval immune cells and the macrophage-specific expression changes upon infection. We made use of the well-established mpeg1, mpx, and lck fluorescent reporter lines to sort and sequence the transcriptome of larval macrophages, neutrophils, and lymphoid progenitor cells, respectively. Our results provide a complete dataset of genes expressed in these different immune cell types and highlight their similarities and differences. Major differences between the macrophage and neutrophil signatures were found within the families of proteinases. Furthermore, expression of genes involved in antigen presentation and processing was specifically detected in macrophages, while lymphoid progenitors showed expression of genes involved in macrophage activation. Comparison with datasets of in vitro polarized human macrophages revealed that zebrafish macrophages express a strongly homologous gene set, comprising both M1 and M2 markers. Furthermore, transcriptome analysis of low numbers of macrophages infected by the intracellular pathogen Mycobacterium marinum revealed that infected macrophages change their transcriptomic response by downregulation of M2-associated genes and overexpression of specific M1-associated genes. Among the infection-induced genes, a homolog of the human CXCL11 chemokine gene, cxcl11aa, stood out as the most strongly overexpressed M1 marker. Upregulation of cxcl11aa in Mycobacterium-infected macrophages was found to require the function of Myd88, a critical adaptor molecule in the Toll-like and interleukin 1 receptor pathways that are central to pathogen recognition and activation of the innate immune response. Altogether, our data provide a valuable data mining resource to support infection and inflammation research in the zebrafish model

    Pathogen Recognition and Activation of the Innate Immune Response in Zebrafish

    Get PDF
    The zebrafish has proven itself as an excellent model to study vertebrate innate immunity. It presents us with possibilities for in vivo imaging of host-pathogen interactions which are unparalleled in mammalian model systems. In addition, its suitability for genetic approaches is providing new insights on the mechanisms underlying the innate immune response. Here, we review the pattern recognition receptors that identify invading microbes, as well as the innate immune effector mechanisms that they activate in zebrafish embryos. We compare the current knowledge about these processes in mammalian models and zebrafish and discuss recent studies using zebrafish infection models that have advanced our general understanding of the innate immune system. Furthermore, we use transcriptome analysis of zebrafish infected with E. tarda, S. typhimurium, and M. marinum to visualize the gene expression profiles resulting from these infections. Our data illustrate that the two acute disease-causing pathogens, E. tarda and S. typhimurium, elicit a highly similar proinflammatory gene induction profile, while the chronic disease-causing pathogen, M. marinum, induces a weaker and delayed innate immune response

    Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The zebrafish embryo is an important <it>in vivo </it>model to study the host innate immune response towards microbial infection. In most zebrafish infectious disease models, infection is achieved by micro-injection of bacteria into the embryo. Alternatively, <it>Edwardsiella tarda</it>, a natural fish pathogen, has been used to treat embryos by static immersion. In this study we used transcriptome profiling and quantitative RT-PCR to analyze the immune response induced by <it>E. tarda </it>immersion and injection.</p> <p>Results</p> <p>Mortality rates after static immersion of embryos in <it>E. tarda </it>suspension varied between 25-75%, while intravenous injection of bacteria resulted in 100% mortality. Quantitative RT-PCR analysis on the level of single embryos showed that expression of the proinflammatory marker genes <it>il1b </it>and <it>mmp9 </it>was induced only in some embryos that were exposed to <it>E. tarda </it>in the immersion system, whereas intravenous injection of <it>E. tarda </it>led to <it>il1b </it>and <it>mmp9 </it>induction in all embryos. In addition, microarray expression profiles of embryos subjected to immersion or injection showed little overlap. <it>E. tarda</it>-injected embryos displayed strong induction of inflammatory and defense genes and of regulatory genes of the immune response. <it>E. tarda</it>-immersed embryos showed transient induction of the cytochrome P450 gene <it>cyp1a</it>. This gene was also induced after immersion in <it>Escherichia coli </it>and <it>Pseudomonas aeruginosa </it>suspensions, but, in contrast, was not induced upon intravenous <it>E. tarda </it>injection. One of the rare common responses in the immersion and injection systems was induction of <it>irg1l</it>, a homolog of a murine immunoresponsive gene of unknown function.</p> <p>Conclusions</p> <p>Based on the differences in mortality rates between experiments and gene expression profiles of individual embryos we conclude that zebrafish embryos cannot be reproducibly infected by exposure to <it>E. tarda </it>in the immersion system. Induction of <it>il1b </it>and <it>mmp9 </it>was consistently observed in embryos that had been systemically infected by intravenous injection, while the early transcriptional induction of <it>cyp1a </it>and <it>irg1l </it>in the immersion system may reflect an epithelial or other tissue response towards cell membrane or other molecules that are shed or released by bacteria. Our microarray expression data provide a useful reference for future analysis of signal transduction pathways underlying the systemic innate immune response versus those underlying responses to external bacteria and secreted virulence factors and toxins.</p

    Automated Whole Animal Bio-Imaging Assay for Human Cancer Dissemination

    Get PDF
    A quantitative bio-imaging platform is developed for analysis of human cancer dissemination in a short-term vertebrate xenotransplantation assay. Six days after implantation of cancer cells in zebrafish embryos, automated imaging in 96 well plates coupled to image analysis algorithms quantifies spreading throughout the host. Findings in this model correlate with behavior in long-term rodent xenograft models for panels of poorly- versus highly malignant cell lines derived from breast, colorectal, and prostate cancer. In addition, cancer cells with scattered mesenchymal characteristics show higher dissemination capacity than cell types with epithelial appearance. Moreover, RNA interference establishes the metastasis-suppressor role for E-cadherin in this model. This automated quantitative whole animal bio-imaging assay can serve as a first-line in vivo screening step in the anti-cancer drug target discovery pipeline

    Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine

    Get PDF
    Transcriptome analysis of a zebrafish mutant that does not respond to amphetamine identifies a network of coordinated gene regulation that may underlie the susceptibility to addiction
    corecore