12,429 research outputs found
Nonequilibrium Dynamics of Charged Particles in an Electromagnetic Field: Causal and Stable Dynamics from 1/c Expansion of QED
We derive from a microscopic Hamiltonian a set of stochastic equations of
motion for a system of spinless charged particles in an electromagnetic (EM)
field based on a consistent application of a dimensionful 1/c expansion of
quantum electrodynamics (QED). All relativistic corrections up to order 1/c^3
are captured by the dynamics, which includes electrostatic interactions
(Coulomb), magnetostatic backreaction (Biot-Savart), dissipative backreaction
(Abraham-Lorentz) and quantum field fluctuations at zero and finite
temperatures. With self-consistent backreaction of the EM field included we
show that this approach yields causal and runaway-free equations of motion,
provides new insights into charged particle backreaction, and naturally leads
to equations consistent with the (classical) Darwin Hamiltonian and has quantum
operator ordering consistent with the Breit Hamiltonian. To order 1/c^3 the
approach leads to a nonstandard mass renormalization which is associated with
magnetostatic self-interactions, and no cutoff is required to prevent runaways.
Our new results also show that the pathologies of the standard Abraham-Lorentz
equations can be seen as a consequence of applying an inconsistent (i.e.
incomplete, mixed-order) expansion in 1/c, if, from the start, the analysis is
viewed as generating a low-energy effective theory rather than an exact
solution. Finally, we show that the 1/c expansion within a Hamiltonian
framework yields well-behaved noise and dissipation, in addition to the
multiple-particle interactions.Comment: 17 pages, 2 figure
Initial state preparation with dynamically generated system-environment correlations
The dependence of the dynamics of open quantum systems upon initial
correlations between the system and environment is an utterly important yet
poorly understood subject. For technical convenience most prior studies assume
factorizable initial states where the system and its environments are
uncorrelated, but these conditions are not very realistic and give rise to
peculiar behaviors. One distinct feature is the rapid build up or a sudden jolt
of physical quantities immediately after the system is brought in contact with
its environments. The ultimate cause of this is an initial imbalance between
system-environment correlations and coupling. In this note we demonstrate
explicitly how to avoid these unphysical behaviors by proper adjustments of
correlations and/or the coupling, for setups of both theoretical and
experimental interest. We provide simple analytical results in terms of
quantities that appear in linear (as opposed to affine) master equations
derived for factorized initial states.Comment: 6 pages, 2 figure
Series-hybrid bearing - An approach to extending bearing fatigue life at high speeds
Fluid film bearing of hybrid device consists of orifice compensated annular thrust bearing and self-acting journal bearing. In series hybrid bearing, both ball bearing and annular thrust bearing carry full system thrust load, but two bearings share speed. Operation of system is stable and automatically fail-safe
The Accuracy of Perturbative Master Equations
We consider open quantum systems with dynamics described by master equations
that have perturbative expansions in the system-environment interaction. We
show that, contrary to intuition, full-time solutions of order-2n accuracy
require an order-(2n+2) master equation. We give two examples of such
inaccuracies in the solutions to an order-2n master equation: order-2n
inaccuracies in the steady state of the system and order-2n positivity
violations, and we show how these arise in a specific example for which exact
solutions are available. This result has a wide-ranging impact on the validity
of coupling (or friction) sensitive results derived from second-order
convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.Comment: 6 pages, 0 figures; v2 updated references; v3 updated references,
extension to full-time and nonlocal regime
Non-Markovian Dynamics and Entanglement of Two-level Atoms in a Common Field
We derive the stochastic equations and consider the non-Markovian dynamics of
a system of multiple two-level atoms in a common quantum field. We make only
the dipole approximation for the atoms and assume weak atom-field interactions.
From these assumptions we use a combination of non-secular open- and
closed-system perturbation theory, and we abstain from any additional
approximation schemes. These more accurate solutions are necessary to explore
several regimes: in particular, near-resonance dynamics and low-temperature
behavior. In detuned atomic systems, small variations in the system energy
levels engender timescales which, in general, cannot be safely ignored, as
would be the case in the rotating-wave approximation (RWA). More problematic
are the second-order solutions, which, as has been recently pointed out, cannot
be accurately calculated using any second-order perturbative master equation,
whether RWA, Born-Markov, Redfield, etc.. This latter problem, which applies to
all perturbative open-system master equations, has a profound effect upon
calculation of entanglement at low temperatures. We find that even at zero
temperature all initial states will undergo finite-time disentanglement
(sometimes termed "sudden death"), in contrast to previous work. We also use
our solution, without invoking RWA, to characterize the necessary conditions
for Dickie subradiance at finite temperature. We find that the subradiant
states fall into two categories at finite temperature: one that is temperature
independent and one that acquires temperature dependence. With the RWA there is
no temperature dependence in any case.Comment: 17 pages, 13 figures, v2 updated references, v3 clarified results and
corrected renormalization, v4 further clarified results and new Fig. 8-1
Particle dynamics inside shocks in Hamilton-Jacobi equations
Characteristics of a Hamilton-Jacobi equation can be seen as action
minimizing trajectories of fluid particles. For nonsmooth "viscosity"
solutions, which give rise to discontinuous velocity fields, this description
is usually pursued only up to the moment when trajectories hit a shock and
cease to minimize the Lagrangian action. In this paper we show that for any
convex Hamiltonian there exists a uniquely defined canonical global nonsmooth
coalescing flow that extends particle trajectories and determines dynamics
inside the shocks. We also provide a variational description of the
corresponding effective velocity field inside shocks, and discuss relation to
the "dissipative anomaly" in the limit of vanishing viscosity.Comment: 15 pages, no figures; to appear in Philos. Trans. R. Soc. series
The equilibrium states of open quantum systems in the strong coupling regime
In this work we investigate the late-time stationary states of open quantum
systems coupled to a thermal reservoir in the strong coupling regime. In
general such systems do not necessarily relax to a Boltzmann distribution if
the coupling to the thermal reservoir is non-vanishing or equivalently if the
relaxation timescales are finite. Using a variety of non-equilibrium formalisms
valid for non-Markovian processes, we show that starting from a product state
of the closed system = system + environment, with the environment in its
thermal state, the open system which results from coarse graining the
environment will evolve towards an equilibrium state at late-times. This state
can be expressed as the reduced state of the closed system thermal state at the
temperature of the environment. For a linear (harmonic) system and environment,
which is exactly solvable, we are able to show in a rigorous way that all
multi-time correlations of the open system evolve towards those of the closed
system thermal state. Multi-time correlations are especially relevant in the
non-Markovian regime, since they cannot be generated by the dynamics of the
single-time correlations. For more general systems, which cannot be exactly
solved, we are able to provide a general proof that all single-time
correlations of the open system evolve to those of the closed system thermal
state, to first order in the relaxation rates. For the special case of a
zero-temperature reservoir, we are able to explicitly construct the reduced
closed system thermal state in terms of the environmental correlations.Comment: 20 pages, 2 figure
Outbreak of acute hepatitis C following the use of anti-hepatitis C virus--screened intravenous immunoglobulin therapy
BACKGROUND and AIMS: Hepatitis C virus (HCV) infection has been associated with intravenous (IV) immunoglobulin (Ig), and plasma donations used to prepare IV Ig are now screened to prevent transmission. Thirty-six patients from the United Kingdom received infusions from a batch of anti-HCV antibody-screened intravenous Ig (Gammagard; Baxter Healthcare Ltd., Thetford, Norfolk, England) that was associated with reports of acute hepatitis C outbreak in Europe. The aim of this study was to document the epidemiology of this outbreak. METHODS: Forty-six patients from the United Kingdom treated with Gammagard (34 exposed and 12 unexposed to the batch) returned epidemiological questionnaires. RESULTS: Eighty-two percent of the exposed patients (28 of 34) became positive for HCV RNA. Eighteen percent of the patients (6 of 34) who had infusions with this batch tested negative for HCV RNA, but 2 of the patients had abnormal liver function and subsequently seroconverted to anti-HCV antibody positive. Twenty-seven percent of the patients (9 of 34) developed jaundice, and 79% (27 of 34) had abnormal liver transferase levels. Virus isolates (n=21), including an isolate from the implicated batch, were genotype 1a and virtually identical by sequence analysis of the NS5 region, consistent with transmission from a single source. CONCLUSIONS: Hepatitis C infection can be transmitted by anti-HCV-screened IV Ig. Careful documentation of IV Ig batch numbers and regular biochemical monitoring is recommended for all IV Ig recipients
Leptoproduction of J/psi
We study leptoproduction of at large within the
nonrelativistic QCD (NRQCD) factorization formalism. The cross section is
dominated by color-octet terms that are of order . The color-singlet
term, which is of order , is shown to be a small contribution to
the total cross section. We also calculate the tree diagrams for color-octet
production at order in a region of phase space where there is no
leading color-octet contribution. We find that in this regime the color-singlet
contribution dominates. We argue that non-perturbative corrections arising from
diffractive leptoproduction, higher twist effects, and higher order terms in
the NRQCD velocity expansion should be suppressed as is increased.
Therefore, the color-octet matrix elements can be reliably extracted from this process.
Finally, we point out that an experimental measurement of the polarization of
leptoproduced will provide an excellent test of the NRQCD
factorization formalism.Comment: 33 pages latex. 10 figures. Uses revtex, epsf, and rotate macros.
This paper is also available via the UW phenomenology archives at
http://phenom.physics.wisc.edu/pub/preprints
Subsidised by junk foods: factors influencing body condition in stray cats (Felis catus)
Domestic cats (Felis catus) are one of the most widely distributed and successful carnivores globally. While cats are popular pets, many unowned, ‘stray’ cats live freely in anthropogenic environments at high densities where they make use of anthropogenic resources. These stray cats present a management challenge due to concerns about wildlife predation, pathogen transmission, public nuisance and threats to cat welfare (e.g. vehicle collisions). In Australia, there are few studies
of strays compared with pet cats or feral cats (free-roaming cats in rural areas that are independent of resources provided
by humans). To contribute original data about stray cat biology, the carcasses of 188 euthanised stray cats were collected from Perth, Western Australia. Cats were assessed for general health, age, reproduction, diet and gastrointestinal parasite
biomass. The influence of cat demographics, collection location, season, parasite biomass, diet and history of supplemental feeding by people were tested against body condition. Overall, strays were physically healthy and reproductive, with few
life-threatening injuries or macroscopic evidence of disease; however, helminths were extremely common (95% of cats) and pose a threat. Nearly 40% of strays consumed wildlife, including two species of endemic marsupial. Alarmingly, 57.5%
of strays were scavenging vast amounts of refuse, including life-threatening items in volumes that blocked their gastrointestinal tracts. These findings illustrate that strays need to be removed from anthropogenic environments for their own
health and welfare and to prevent continued breeding. Targeted control programmes should prioritise removal of cats from areas where refuse is common and where valued native fauna exist
- …