440 research outputs found

    Casimir interaction between normal or superfluid grains in the Fermi sea

    Get PDF
    We report on a new force that acts on cavities (literally empty regions of space) when they are immersed in a background of non-interacting fermionic matter fields. The interaction follows from the obstructions to the (quantum mechanical) motions of the fermions caused by the presence of bubbles or other (heavy) particles in the Fermi sea, as, for example, nuclei in the neutron sea in the inner crust of a neutron star or superfluid grains in a normal Fermi liquid. The effect resembles the traditional Casimir interaction between metallic mirrors in the vacuum. However, the fluctuating electromagnetic fields are replaced by fermionic matter fields. We show that the fermionic Casimir problem for a system of spherical cavities can be solved exactly, since the calculation can be mapped onto a quantum mechanical billiard problem of a point-particle scattered off a finite number of non-overlapping spheres or disks. Finally we generalize the map method to other Casimir systems, especially to the case of a fluctuating scalar field between two spheres or a sphere and a plate under Dirichlet boundary conditions.Comment: 8 pages, 2 figures, submitted to the Proceedings of QFEXT'05, Barcelona, Sept. 5-9, 200

    Towards an Asymptotic-Safety Scenario for Chiral Yukawa Systems

    Full text link
    We search for asymptotic safety in a Yukawa system with a chiral U(NL)LU(1)RU(N_L)_L\otimes U(1)_R symmetry, serving as a toy model for the standard-model Higgs sector. Using the functional RG as a nonperturbative tool, the leading-order derivative expansion exhibits admissible non-Ga\ssian fixed-points for 1NL571 \leq N_L \leq 57 which arise from a conformal threshold behavior induced by self-balanced boson-fermion fluctuations. If present in the full theory, the fixed-point would solve the triviality problem. Moreover, as one fixed point has only one relevant direction even with a reduced hierarchy problem, the Higgs mass as well as the top mass are a prediction of the theory in terms of the Higgs vacuum expectation value. In our toy model, the fixed point is destabilized at higher order due to massless Goldstone and fermion fluctuations, which are particular to our model and have no analogue in the standard model.Comment: 16 pages, 8 figure

    Introduction to the functional RG and applications to gauge theories

    Get PDF
    These lectures contain an introduction to modern renormalization group (RG) methods as well as functional RG approaches to gauge theories. In the first lecture, the functional renormalization group is introduced with a focus on the flow equation for the effective average action. The second lecture is devoted to a discussion of flow equations and symmetries in general, and flow equations and gauge symmetries in particular. The third lecture deals with the flow equation in the background formalism which is particularly convenient for analytical computations of truncated flows. The fourth lecture concentrates on the transition from microscopic to macroscopic degrees of freedom; even though this is discussed here in the language and the context of QCD, the developed formalism is much more general and will be useful also for other systems.Comment: 60 pages, 14 figures, Lectures held at the 2006 ECT* School "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Trento, Ital

    Casimir forces between arbitrary compact objects: Scalar and electromagnetic field

    Full text link
    We develop an exact method for computing the Casimir energy between arbitrary compact objects, both with boundary conditions for a scalar field and dielectrics or perfect conductors for the electromagnetic field. The energy is obtained as an interaction between multipoles, generated by quantum source or current fluctuations. The objects' shape and composition enter only through their scattering matrices. The result is exact when all multipoles are included, and converges rapidly. A low frequency expansion yields the energy as a series in the ratio of the objects' size to their separation. As examples, we obtain this series for two spheres with Robin boundary conditions for a scalar field and dielectric spheres for the electromagnetic field. The full interaction at all separations is obtained for spheres with Robin boundary conditions and for perfectly conducting spheres.Comment: 24 pages, 3 figures, contribution to QFEXT07 proceeding

    Towards a renormalizable standard model without fundamental Higgs scalar

    Full text link
    We investigate the possibility of constructing a renormalizable standard model with purely fermionic matter content. The Higgs scalar is replaced by point-like fermionic self-interactions with couplings growing large at the Fermi scale. An analysis of the UV behavior in the point-like approximation reveals a variety of non-Gaussian fixed points for the fermion couplings. If real, such fixed points would imply nonperturbative renormalizability and evade triviality of the Higgs sector. For point-like fermionic self-interactions and weak gauge couplings, one encounters a hierarchy problem similar to the one for a fundamental Higgs scalar.Comment: 18 pages, 4 figure

    Effective action for the order parameter of the deconfinement transition of Yang-Mills theories

    Full text link
    The effective action for the Polyakov loop serving as an order parameter for deconfinement is obtained in one-loop approximation to second order in a derivative expansion. The calculation is performed in d4d\geq 4 dimensions, mostly referring to the gauge group SU(2). The resulting effective action is only capable of describing a deconfinement phase transition for d>dcr7.42d>d_{\text{cr}}\simeq 7.42. Since, particularly in d=4d=4, the system is strongly governed by infrared effects, it is demonstrated that an additional infrared scale such as an effective gluon mass can change the physical properties of the system drastically, leading to a model with a deconfinement phase transition.Comment: 23 pages, 4 figures, minor improvements, version to appear in PR

    Equivalent Fixed-Points in the Effective Average Action Formalism

    Full text link
    Starting from a modified version of Polchinski's equation, Morris' fixed-point equation for the effective average action is derived. Since an expression for the line of equivalent fixed-points associated with every critical fixed-point is known in the former case, this link allows us to find, for the first time, the analogous expression in the latter case.Comment: 30 pages; v2: 29 pages - major improvements to section 3; v3: published in J. Phys. A - minor change

    Scaling laws near the conformal window of many-flavor QCD

    Full text link
    We derive universal scaling laws for physical observables such as the critical temperature, the chiral condensate, and the pion decay constant as a function of the flavor number near the conformal window of many-flavor QCD in the chiral limit. We argue on general grounds that the associated critical exponents are all interrelated and can be determined from the critical exponent of the running gauge coupling at the Caswell-Banks-Zaks infrared fixed point. We illustrate our findings with the aid of nonperturbative functional Renormalization Group (RG) calculations and low-energy QCD models.Comment: 18 pages, 4 figures, references added and discussion expanded (matches JHEP version

    Exact zero-point interaction energy between cylinders

    Get PDF
    We calculate the exact Casimir interaction energy between two perfectly conducting, very long, eccentric cylindrical shells using a mode summation technique. Several limiting cases of the exact formula for the Casimir energy corresponding to this configuration are studied both analytically and numerically. These include concentric cylinders, cylinder-plane, and eccentric cylinders, for small and large separations between the surfaces. For small separations we recover the proximity approximation, while for large separations we find a weak logarithmic decay of the Casimir interaction energy, typical of cylindrical geometries.Comment: 20 pages, 7 figure
    corecore