2,914 research outputs found

    Eulerian Walkers as a model of Self-Organised Criticality

    Get PDF
    We propose a new model of self-organized criticality. A particle is dropped at random on a lattice and moves along directions specified by arrows at each site. As it moves, it changes the direction of the arrows according to fixed rules. On closed graphs these walks generate Euler circuits. On open graphs, the particle eventually leaves the system, and a new particle is then added. The operators corresponding to particle addition generate an abelian group, same as the group for the Abelian Sandpile model on the graph. We determine the critical steady state and some critical exponents exactly, using this equivalence.Comment: 4 pages, RevTex, 4 figure

    Charge and Statistics of Quasiparticles in Fractional Quantum Hall Effec

    Full text link
    We have studied here the charge and statistics of quasiparticle excitations in FQH states on the basis of the Berry phase approach incorporating the fact that even number of flux quanta can be gauged away when the Berry phase is removed to the dynamical phase. It is observed that the charge qq and statistical parameter θ\theta of a quasiparticle at filling factor ν=n2pn+1\nu=\frac{n}{2pn+1} are given by q=(n2pn+1)eq=(\frac{n}{2pn+1})e and θ=n2pn+1\theta=\frac{n}{2pn+1}, with the fact that the charge of the quasihole is opposite to that of the quasielectron. Using Laughlin wave function for quasiparticles, numerical studies have been done following the work of Kj{\o}nsberg and Myrheim \cite{KM} for FQH states at ν=1/3\nu=1/3 and it is pointed out that as in case of quasiholes, the statistics parameter can be well defined for quasielectrons having the value θ=1/3\theta=1/3.Comment: 12 pages, 4 figure

    Solvent Structure and Molecular Orientation in the Double-Layer at the Mercury- Water Interface

    Get PDF
    Solvent structure and molecular orientation in the Hg-water interphase is an important and previously little investigated aspect of the electrical double-layer at charged metal interfaces. By using pyrazine and pyridine in critical comparative experiments on a) changes of surface dipole potential difference (Esin and Markov effects), b) surface pressure changes and c) charge dependence of free energy of adsorption, it is shown how the surface dipole contribution from oriented solvent molecules may be evaluated together with the charge-dependent distribution function for water orientation. In the case of pyridine, orientation of the adsorbate molecule itself occurs in a manner dependent on surface charge on the metal and interaction with oriented and bulk solvent molecules

    Lyapunov exponents and transport in the Zhang model of Self-Organized Criticality

    Full text link
    We discuss the role played by the Lyapunov exponents in the dynamics of Zhang's model of Self-Organized Criticality. We show that a large part of the spectrum (slowest modes) is associated with the energy transpor in the lattice. In particular, we give bounds on the first negative Lyapunov exponent in terms of the energy flux dissipated at the boundaries per unit of time. We then establish an explicit formula for the transport modes that appear as diffusion modes in a landscape where the metric is given by the density of active sites. We use a finite size scaling ansatz for the Lyapunov spectrum and relate the scaling exponent to the scaling of quantities like avalanche size, duration, density of active sites, etc ...Comment: 33 pages, 6 figures, 1 table (to appear

    Solvent Structure and Molecular Orientation in the Double-Layer at the Mercury- Water Interface

    Get PDF
    Solvent structure and molecular orientation in the Hg-water interphase is an important and previously little investigated aspect of the electrical double-layer at charged metal interfaces. By using pyrazine and pyridine in critical comparative experiments on a) changes of surface dipole potential difference (Esin and Markov effects), b) surface pressure changes and c) charge dependence of free energy of adsorption, it is shown how the surface dipole contribution from oriented solvent molecules may be evaluated together with the charge-dependent distribution function for water orientation. In the case of pyridine, orientation of the adsorbate molecule itself occurs in a manner dependent on surface charge on the metal and interaction with oriented and bulk solvent molecules

    A non-destructive analytic tool for nanostructured materials : Raman and photoluminescence spectroscopy

    Full text link
    Modern materials science requires efficient processing and characterization techniques for low dimensional systems. Raman spectroscopy is an important non-destructive tool, which provides enormous information on these materials. This understanding is not only interesting in its own right from a physicist's point of view, but can also be of considerable importance in optoelectronics and device applications of these materials in nanotechnology. The commercial Raman spectrometers are quite expensive. In this article, we have presented a relatively less expensive set-up with home-built collection optics attachment. The details of the instrumentation have been described. Studies on four classes of nanostructures - Ge nanoparticles, porous silicon (nanowire), carbon nanotubes and 2D InGaAs quantum layers, demonstrate that this unit can be of use in teaching and research on nanomaterials.Comment: 32 pages, 13 figure

    A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Get PDF
    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system

    Percolation Systems away from the Critical Point

    Get PDF
    This article reviews some effects of disorder in percolation systems even away from the critical density p_c. For densities below p_c, the statistics of large clusters defines the animals problem. Its relation to the directed animals problem and the Lee-Yang edge singularity problem is described. Rare compact clusters give rise to Griffiths singuraties in the free energy of diluted ferromagnets, and lead to a very slow relaxation of magnetization. In biassed diffusion on percolation clusters, trapping in dead-end branches leads to asymptotic drift velocity becoming zero for strong bias, and very slow relaxation of velocity near the critical bias field.Comment: Minor typos fixed. Submitted to Praman

    Exact Solution of Return Hysteresis Loops in One Dimensional Random Field Ising Model at Zero Temperature

    Full text link
    Minor hysteresis loops within the main loop are obtained analytically and exactly in the one-dimensional ferromagnetic random field Ising-model at zero temperature. Numerical simulations of the model show excellent agreement with the analytical results
    corecore