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Abstract. This article reviews some effects of disorder in percolation systems away from the crit-
ical densitypc. For densities belowpc, the statistics of large clusters defines the animals problem.
Its relation to the directed animals problem and the Lee–Yang edge singularity problem is described.
Rare compact clusters give rise to Griffiths singularities in the free energy of diluted ferromagnets,
and lead to a very slow relaxation of magnetization. In biased diffusion on percolation clusters, trap-
ping in dead-end branches leads to asymptotic drift velocity becoming zero for strong bias, and very
slow relaxation of velocity near the critical bias field.
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1. Introduction

In this paper, I will review some examples of interesting effects caused by disorder in a
classical percolation system. The aim is mainly pedagogical, and I do not attempt to be
exhaustive. The selection of topics was determined primarily by my familiarity rather than
any other reasons. I will only outline the main results. The interested reader will have to
go back to the cited literature for details.

Consider a random mixture of equal-sized conducting and insulating beads in a box. It
is easy to see that as the fraction of conducting balls is varied from zero to one, the bulk
mixture undergoes a transition from insulating to conducting. This is the basic percolation
transition, and has been studied a lot as a simple geometrical model of phase transitions. As
in the case of thermal critical phase transitions, various physical quantities have singular
behavior near the phase transition, characterized by ‘critical exponents’. Scaling theory,
simulations and theoretical techniques such as renormalization group etc. have been used
very successfully to understand the behavior of percolation systems at its critical point.
In particular, in two dimensions, all the critical exponents of percolation are known from
conformal field theory. Several good reviews on this subject are now available [1].

There is more to percolation theory than the critical exponents. Of course, an experi-
mental disordered system may often be modelled by site- or bond-percolation. In general,
one is much more likely to find it not near its percolation threshold. Critical exponents of
the percolation theory are not of much use in describing these systems. It turns out that
percolation systems, such as the classical models of disordered media show many interest-
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ing features, even away from the critical point. I will discuss some examples of these in
the following sections.

2. Off-critical exponents in percolation

Let Pn(p) be a probability that the cluster of connected sites containing the origin has
exactlyn sites. Then, for allp< pc, for largen,

Pn(p)� An�θ exp[�B(p)n]; (1)

whereB(p) is a p-dependent function that goes to zero asp tends topc. The exponentθ
is independent ofp, and depends only on the dimension of space. This law is valid for
n much greater than the typical cluster sizen?(p). For n� n?(p), one gets a different
exponentPn(p) � n�τ , with τ 6= θ . As p tends topc, n?(p) diverges. Hereτ is a critical
exponent of percolation theory, butθ is anoff-critical exponent.

In the limit p! 0, all clusters ofn sites have equal weight (pn). Let An be the number
of different clusters ofn sites possible that contain the origin. (These are called rooted
animals: same cluster with different positions of origin are counted as distinct [2].) Then
one expects that for largen,

An' Kλ nn�θ : (2)

The exponentθ in this equation is the same as that defined by eq. (1), because for small
p, Pn(p) � Anpn. One can also define the average linear size of an animal ofN sites.
This grows asnν , where the exponentν is related to the exponentθ defined above by the
relation

θ = (d�2)ν ; (3)

whered is the dimension of space. The above equation is valid for 1� d� 8. Ford� 8, the
exponentsθ andν stick to their mean-field values 3=2 and 1=4 respectively. Equation (3)
has the form of a hyperscaling relation except that(d�2) appears here instead ofd. This
is understood as being due to a hidden supersymmetry in the problem [3], which makes
the problem of determining the number of animals ind dimensions related to the problem
of Lee–Yang edge singularity in(d�2) dimension.

The Lee–Yang description of the mathematical mechanism of phase transitions is well-
known [4]. For a hard-core lattice gas in a finite volume, with possible additional attractive
short-ranged interactions, the grand-canonical partition functions as a finite degree poly-
nomial with positive coefficients in the chemical activityz. The zeroes of this polynomial
often (not always) lie on lines in the complexz plane. As the temperature is varied, the
coefficients of the polynomial change, and the zeroes move. If at some temperature, the
zeroes come arbitrarily close to the real axis as the size of the system is increased, the
free energy per site becomes a non-analytic function ofz, signalling the onset of a phase
transition.

The density of zeroes along such a line of zeroes near its end point shows a power-law
dependence on the distance from the end point. We define the Lee–Yang edge singularity
exponentσ by the relation that the density varies asε σ at a distanceε from the end point.
It turns out thatσ is independent of temperature for all temperaturesT above the criticial
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temperatureTc, and depends only on the dimension of the system. It was shown by Parisi
and Sourlas [3] that the animal exponentθ (d) in d dimensions is related to the Lee–Yang
edge singularity exponent ind�2 dimensions

θ (d) = σ(d�2)+1: (4)

If we allow only neighbors in the ‘forward direction’, ( say along the direction of increas-
ing coordinates on a hypercubical lattice), we get animals with a directional constraint. It
turns out [5] that critical exponents of directed animals ind dimensions is related to those
of undirected animals in(d+1) dimensions.

θdir(d) = θ (d+1) (5)

and the transverse size exponentν
?;dir for directed animals ind dimensions is the same as

the (only one) size exponentν for undirected animals in(d+1) dimensions

ν
?;dir(d) = ν(d+1): (6)

The exponentσ is easily shown to take the valuesσ = �1 for d = 0 (a point), and
σ =�1=2 for d = 1. Ford = 2, one can use the exact solution of hard hexagon lattice gas
by Baxter to show thatσ =�1=6 for d = 2 [6]. This then shows that the exact values of
the exponentθ for undirected animal in dimensions 1;2;3;4 are�1;0; 1

2;
5
6 respectively.

The corresponding values of the size exponentν are 1; 1
2;

5
12 in dimensions 1, 3 and 4

respectively. In two dimensions, the exponentν is not determined by the scaling relations
given above. The upper critical dimension for the animals problem is 8, and for alld� 8,
we getθ = 3

2, andν = 1
4. The exponents for directed animals are easily determined from

the scaling relations given above.
We have seen that there is a fairly good understanding of the off-critical ‘belowp c’

exponents of percolation. One can also define off-critical exponents in the super-critical
regime of percolation theory. It was shown by Kunz and Souillard [7] that for allp> p c, the
probability that the origin belongs to a finite cluster ofnsites varies as exp(�b(p)n (d�1)=d),
for sufficiently larges. This is easy to understand: to get a finite cluster ofn sites, we need
to disconnect it from the infinite cluster. This needs perimeter bonds of order(n (d�1)=d)
bonds, which gives the result. More accurately, there is a power-law prefactor multiplying
the exponential term, and the probability for a finite cluster ofn sites varies as

Pn(p)� Kn�θ 0

exp(�b(p)n(d�1)=d); (7)

whereb(p) is a function ofp, andK is a constant. The exponentθ 0 can be calculated ex-
actly [8] using the fact that such clusters are roughly compact, with linear size varying as
n1=d, and the fluctuations in the(d�1)-dimensional roughly spherical surface can be de-
scribed in terms of normal modes of vibration of the surface. Lubensky and McKane using
field theory techniques showed that the exponentθ 0 takes the values54;�

1
9;

1
8;�

449
450;�

11
12

for d = 2;3;4;5 and 6 respectively. The non-monotonic behavior ofθ 0 as a function ofd
comes from the fact that the integrals over normal modes in the odd and even dimensions
coming in the theory have different behaviors.

Note that this is one of the few cases where non-trivial values of exponents can be exactly
calculated in many dimensions greater than 2.
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Figure 1. The phase digram of a diluted magnet. The ferromagentic, paramagnetic
and Griffiths phases are denoted by PM, F, and G respectively.

3. Relaxation in disordered ferromagnets

Consider now the case when the atom at each occupied site in a percolation network carries
a magnetic moment, and there is a nearest neighbor ferromagetic interactionJ between the
magnetic atoms. The ‘unoccupied’ sites may be vacancies, or occupied by non-magnetic
atoms. Letp denote the concentration of magnetic atoms. Then ifp< pc, the percolation
threshold, then the system breaks up into mutually-disconnected clusters of magnetically
coupled spins. In such a system no long-range spontaneous magnetization is possible at any
non-zero temperature. Forp> pc, there is an infinite connected cluster, and at sufficiently
low temperatures, spontaneous magnetization exists. The transition temperatureTcurie(p)
depends onp, and goes to zero, asp is decreased from 1 topc. The ferromagnetic phase is
denoted byF in figure 1.

For p< pc, there is no spontaneous magnetization. Letf (T;h) be the disorder-averaged
free energy per site of this system at a temperatureT in a magnetic fieldh. However, it was
shown by Griffiths [9] thatf (T;h) is a non-analytic function of the magnetic field ath= 0
for all T < Tcurie(p = 1). While the partial derivatives∂ n

∂hn f (T;h) exist for all positive
integersn, and are finite, the Taylor series forf (T;h) in powers ofh does not converge
for anyT below theTcurie(p = 1), the Curie-temperature of the ‘pure’ system. Thus, in
the entire region marked G (for the Griffiths phase) in figure 1, there is no spontaneous
magnetization, but the free energy per sitef (T;h) is a non-analytic function ofh.

While the non-analyticity inf (T;h) as a function ofh is of the nature of an essential
singularity, and is difficult to verify in experimental systems, the rare large clusters respon-
sible for it have a much more pronounced effect on the rate of relaxation to equilibrium
in disordered systems. Consider the decay of magnetization in such a system. We assume
that the system is coupled to heat bath at temperatuteT < Tcurie(p = 1), and relaxes by
single-spin-flip Glauber dynamics. At timet = 0, the system is prepared in a state with
all spins up. We monitor the bulk magnetizationM(t) at large timest. Since the spins in
different clusters do not interact with each other, we can writeM(t) as a weighted sum over
different cluster configurationsC .
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M(t) =∑
C

Prob(C )hS(t)i
C
: (8)

For a given finite clusterC of n-sites, one can determine the average magnetization at a site
in the cluster by explicit diagonalization of the matrix of size 2n

�2n. This is non-trivial,
except for very smalln. Fortunately, the behavior ofM(t) for larget can be determined by
simple qualitative arguments.

In the summation eq. (8), the leading behavior of each term is exponential in time, with
the decay rateγ

C
depending on the clusterC . Thus, we may write

hS(t)i
C
' exp(�γ

C
t) (9)

and hence

M(t)'∑
C

Prob(C )exp(�γ
C

t): (10)

At large times, clusters with smallest decay rates contribute the most. The slowest relax-
ing clusters are those where all sites within a disc of radiusRare occupied. The density of
such clusters varies as exp(�ARd), where the constantA depends onp. If the magnetiza-
tion of such a cluster has to flip, it would need to create a domain wall of energy' σRd�1.
The rate of such an activated process will decrease for largeR as exp(�σRd�1=T). It is
then straightforward to put these estimates in eq. (8), and deduce that

M(t)� exp(�K(log t)d=(d�1)); for larget: (11)

For p > pc, in the ferromagnetic phase (F in figure 1) the probability of a large finite
cluster of radiusR, varies as exp(�aRd�1), and not as exp(�Rd). Then the steepest descent
calculation shows that in the ferromagnetic phase F, the magnetization at long times decays
as a power lawM(t)� t�c, where the exponentc depends on bothp andT.

The argument outlined above was first presented in [10]. The argument has been refined
[11,12]. Unfortunately, neither actual experimental data on disordered ferromagnets, nor
the results of numerical simulations [13] show a clear evidence of such a exp[�(log t) x]
behavior. Presumably the time scale beyond which the contribution of rare clusters will
dominate is larger than experimentally accessible time scales. The experimental data seems
to fit better a stretched exponential exp(�t x). It seems that a more careful argument, that
gives not only the correct asymptotic behavior at longest times, but also at intermediate
times, is needed.

4. Biased diffusion on percolation networks

Consider the motion of a single diffusing particle on a percolation network, say in two
dimensions, with density of occupied sites beingp. We assume that the particle can move
only on the occupied sites of the lattice (figure 2). Then ifp is less than the critical prob-
ability pc, the particle is localized. Forp> pc, if the particle starts on the infinite cluster,
its mean square deviation from the initial position grows linearly with time,hR2

i �D(p)t,
where the diffusion constantD(p) depends onp and tends to zero asp tends top c. This
problem of (unbiased) diffusion on percolation clusters has been studied much [14].
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B

Figure 2. Schematic representation of the percolation cluster with density above the
critical threshold. The heavy lines denote the dead-end branches.

If there is a larger probability of displacement in some direction, due to an imposed field,
we have biased diffusion. We shall model it by assuming that at any time the diffusing
particle attempts to take a step in the up, right, down or left directions with probabilities
(1�B)=4;1=4;(1+B)=4 and 1=4 respectively. The step is actually taken if the intended
destination site is occupied. If the biasing fieldB is small, we have a non-zero value of
average displacement per step, and this gives rise to mean displacement in timet in the
direction of the field growing linearly witht, and the mean velocity in timet tends to a
constant

~v∞ = lim
t!∞

h~Rti=t: (12)

This asymptotic velocity~v∞ is proportional toB for smallB.
If p is near 1, most of the sites are occupied, and at large length scales, the medium looks

homogeneous. One then expects that so long asp> pc, we expect the same behavior as in
the system without disorder (p= 1) (figure 2).

Bottger and Bryksin [15] realized that this is not so. They argued that the mean velocity
must tend to zero asB tends to 1, because of the possibility of trapping in dead-ends. We
argued in [16], that for anyp < 1, there exists a critical biasBc such that the asymptotic
drift velocity~v is exactly zero for allB> Bc. This is easily seen as during its motion, the
particle may get trapped in dead-end branches for long times, as it has to move against the
field to get out of the trap. For a trap of depth` the potential barrier to cross increases with
`, and the trapping time varies as( 1+B

1�B)
`. The densityρ(`) of traps of depth̀ varies as

exp(�`=ξ ). Hence the average trapping time per step along the backbone is

∞

∑̀
=1

ρ(`)
�

1+B
1�B

�`

; (13)
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Figure 3. The average velocityv as a function of the biasing fieldB.

whereξ is thep-dependent percolation correlation length of the system. This summation
converges only forB< Bc = tanh( 1

2ξ ). ForB= Bc� ε , with ε > 0, this summation varies
as 1=ε , and the mean velocity, which varies inversely as the mean trapping time varies
proportional toε (figure 3).

ForB>Bc, the asymptotic velocity~V∞ is zero, but the mean displacement of the particle
h~Rti increases asta with a< 1. The exponenta depends continuously onB, and is easily
obtained by using the condition that the density of traps with trapping time greater than or
equal tot varies ast�a, where

a=

�
1
ξ

�
log

�
1+B
1�B

�
: (14)

In a timet, the particle can, on the average, only travel a distancet a before it encounters
a trap with trapping time bigger thant, and gets stuck there. Eventually, it will exit from
this trap, only to get stuck in other traps, some with even larger trapping times. Thus,
if we examine all particles at some large timet, typically they would be stuck in, or just
emerging from a trap with trapping time of ordert.

For B = Bc, the average trapping time per step encountered by the walker is given by
(13), except that summation over` is cutoff at a valuè max, where`max is the typical value
of the trapping time of the deepest trap encountered by a walker up to timet. It is easy to
see that̀ max varies as logt for larget, and hence the average velocity of the particle up to
time t varies as 1

logt . Thus the average velocity decreases very slowly to zero atB = Bc.
This very slow relaxation has been checked in large-scale simulations of this problem [17].

If B = Bc� ε , then this slow decay of the velocity continues from its initial value of
order 1, to the final value which is of orderε . As the initial decay of velocity would be
nearly the same as that forB= Bc, we see that typical relaxation timeτ(B) for the average
velocity in an ensemble of non-interacting particles to reach the steady state value varies
as
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τ(B)� exp

�
A

Bc�B

�
; (15)

whereA is a constant. Note that this relaxation is the overall relaxation time for a macro-
scopic observable (average current–density for an ensemble of non-interacting particle).
We are not discussing the largest relaxation time, as that is infinite for allB, however
small.

Thus, biased diffusion of non-interacting particles on a percolation network provides a
very simple model where a fast rise of relaxation time near a dynamical phase-transition
(‘the Vogel–Fulcher law’ of glassy dynamics) can be seen.

We see that disorder affects both the static and dynamical properties of the system in a
very significant way. The affect on non-equilibrium properties like response functions is
much more pronounced. I hope that further work will lead to a better understanding of
these systems.
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