266 research outputs found

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax

    Fatness-Associated FTO Gene Variant Increases Mortality Independent of Fatness – in Cohorts of Danish Men

    Get PDF
    The A-allele of the single nucleotide polymorphism (SNP), rs9939609, in the FTO gene is associated with increased fatness. We hypothesized that the SNP is associated with morbidity and mortality through the effect on fatness.In a population of 362,200 Danish young men, examined for military service between 1943 and 1977, all obese (BMI>or=31.0 kg/m(2)) and a random 1% sample of the others were identified. In 1992-94, at an average age of 46 years, 752 of the obese and 876 of the others were re-examined, including measurements of weight, fat mass, height, and waist circumference, and DNA sampling. Hospitalization and death occurring during the following median 13.5 years were ascertained by linkage to national registers. Cox regression analyses were performed using a dominant effect model (TT vs. TA or AA). In total 205 men died. Mortality was 42% lower (p = 0.001) with the TT genotype than in A-allele carriers. This phenomenon was observed in both the obese and the randomly sampled cohort when analysed separately. Adjustment for fatness covariates attenuated the association only slightly. Exploratory analyses of cause-specific mortality and morbidity prior to death suggested a general protective effect of the TT genotype, whereas there were only weak associations with disease incidence, except for diseases of the nervous system.Independent of fatness, the A-allele of the FTO SNP appears to increase mortality of a magnitude similar to smoking, but without a particular underlying disease pattern barring an increase in the risk of diseases of the nervous system

    Increasing incidence of childhood tumours of the central nervous system in Denmark, 1980–1996

    Get PDF
    The registered incidence rate of childhood central nervous system (CNS) tumours has increased in several countries. It is uncertain whether these increases are biologically real or owing to improved diagnostic methods. We explored the medical records of 626 CNS tumours diagnosed in Danish children between 1980 and 1996. Population-based registers were used to extract data on mortality and background population. Temporal patterns were analysed by regression techniques. Most tumours were verified by computed tomography (78%) or magnetic resonance imaging (14%). Overall, the incidence rate increased by 2.9% per year (95% confidence interval (CI): 1.3;4.5) and the mortality rate increased by 1.4% per year (95% CI: −0.4;3.3). Among children aged 0–4 years, the survival rate after diagnosis remained almost unchanged, whereas among children aged 5–14 years, the 10-year survival rate improved from 59 to 74%. These data suggest that the incidence rate of CNS tumours among Danish children has truly increased, although alternative explanations cannot be excluded

    Calibration of FRAX ® 3.1 to the Dutch population with data on the epidemiology of hip fractures

    Get PDF
    SummaryThe FRAX tool has been calibrated to the entire Dutch population, using nationwide (hip) fracture incidence rates and mortality statistics from the Netherlands. Data used for the Dutch model are described in this paper.IntroductionRisk communication and decision making about whether or not to treat with anti-osteoporotic drugs with the use of T-scores are often unclear for patients. The recently developed FRAX models use easily obtainable clinical risk factors to estimate an individual's 10-year probability of a major osteoporotic fracture and hip fracture that is useful for risk communication and subsequent decision making in clinical practice. As of July 1, 2010, the tool has been calibrated to the total Dutch population. This paper describes the data used to develop the current Dutch FRAX model and illustrates its features compared to other countries.MethodsAge- and sex-stratified hip fracture incidence rates (LMR database) and mortality rates (Dutch national mortality statistics) for 2004 and 2005 were extracted from Dutch nationwide databases (patients aged 50+ years). For other major fractures, Dutch incidence rates were imputed, using Swedish ratios for hip to osteoporotic fracture (upper arm, wrist, hip, and clinically symptomatic vertebral) probabilities (age- and gender-stratified). The FRAX tool takes into account age, sex, body mass index (BMI), presence of clinical risk factors, and bone mineral density (BMD).ResultsFracture incidence rates increased with increasing age: for hip fracture, incidence rates were lowest among Dutch patients aged 50–54 years (per 10,000 inhabitants: 2.3 for men, 2.1 for women) and highest among the oldest subjects (95–99 years; 169 of 10,000 for men, 267 of 10,000 for women). Ten-year probability of hip or major osteoporotic fracture was increased in patients with a clinical risk factor, lower BMI, female gender, a higher age, and a decreased BMD T-score. Parental hip fracture accounted for the greatest increase in 10-year fracture probability.ConclusionThe Dutch FRAX tool is the first fracture prediction model that has been calibrated to the total Dutch population, using nationwide incidence rates for hip fracture and mortality rates. It is based on the original FRAX methodology, which has been externally validated in several independent cohorts. Despite some limitations, the strengths make the Dutch FRAX tool a good candidate for implementation into clinical practice

    Role of monocarboxylate transporters in human cancers : state of the art

    Get PDF
    Monocarboxylate transporters (MCTs) belong to the SLC16 gene family, presently composed by 14 members. MCT1-MCT4 are proton symporters, which mediate the transmembrane transport of pyruvate, lactate and ketone bodies. The role of MCTs in cell homeostasis has been characterized in detail in normal tissues, however, their role in cancer is still far from understood. Most solid tumors are known to rely on glycolysis for energy production and this activity leads to production of important amounts of lactate, which are exported into the extracellular milieu, contributing to the acidic microenvironment. In this context, MCTs will play a dual role in the maintenance of the hyper-glycolytic acidresistant phenotype of cancer, allowing the maintenance of the high glycolytic rates by performing lactate efflux, and pH regulation by the co-transport of protons. Thus, they constitute attractive targets for cancer therapy, which have been little explored. Here we review the literature on the role of MCTs in solid tumors in different locations, such as colon, central nervous system, breast, lung, gynecologic tract, prostate, stomach, however, there are many conflicting results and in most cases there are no functional studies showing the dependence of the tumors on MCT expression and activity. Additional studies on MCT expression in other tumor types, confirmation of the results already published as well as additional functional studies are needed to deeply understand the role of MCTs in cancer maintenance and aggressiveness

    Overview of the Proton-coupled MCT (SLC16A) Family of Transporters: Characterization, Function and Role in the Transport of the Drug of Abuse γ-Hydroxybutyric Acid

    Get PDF
    The transport of monocarboxylates, such as lactate and pyruvate, is mediated by the SLC16A family of proton-linked membrane transport proteins known as monocarboxylate transporters (MCTs). Fourteen MCT-related genes have been identified in mammals and of these seven MCTs have been functionally characterized. Despite their sequence homology, only MCT1–4 have been demonstrated to be proton-dependent transporters of monocarboxylic acids. MCT6, MCT8 and MCT10 have been demonstrated to transport diuretics, thyroid hormones and aromatic amino acids, respectively. MCT1–4 vary in their regulation, tissue distribution and substrate/inhibitor specificity with MCT1 being the most extensively characterized isoform. Emerging evidence suggests that in addition to endogenous substrates, MCTs are involved in the transport of pharmaceutical agents, including γ-hydroxybuytrate (GHB), 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins), salicylic acid, and bumetanide. MCTs are expressed in a wide range of tissues including the liver, intestine, kidney and brain, and as such they have the potential to impact a number of processes contributing to the disposition of xenobiotic substrates. GHB has been extensively studied as a pharmaceutical substrate of MCTs; the renal clearance of GHB is dose-dependent with saturation of MCT-mediated reabsorption at high doses. Concomitant administration of GHB and l-lactate to rats results in an approximately two-fold increase in GHB renal clearance suggesting that inhibition of MCT1-mediated reabsorption of GHB may be an effective strategy for increasing renal and total GHB elimination in overdose situations. Further studies are required to more clearly define the role of MCTs on drug disposition and the potential for MCT-mediated detoxification strategies in GHB overdose

    Glucose Transporter 1 and Monocarboxylate Transporters 1, 2, and 4 Localization within the Glial Cells of Shark Blood-Brain-Barriers

    Get PDF
    Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT) isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB). GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT) involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark brain may establish the molecular foundation of metabolic coupling between glia and neurons
    corecore