5,378 research outputs found

    The production and persistence of ΣRONO2 in the Mexico City plume

    Get PDF
    Alkyl and multifunctional nitrates (RONO2, ΣANs) have been observed to be a significant fraction of NOy in a number of different chemical regimes. Their formation is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. ΣANs also represent a potentially large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Numerous studies have investigated the role of nitrate formation from biogenic compounds and in the remote atmosphere. Less attention has been paid to the role ΣANs may play in the complex mixtures of hydrocarbons typical of urban settings. Measurements of total alkyl and multifunctional nitrates, NO2, total peroxy nitrates (ΣPNs), HNO3 and a representative suite of hydrocarbons were obtained from the NASA DC-8 aircraft during spring of 2006 in and around Mexico City and the Gulf of Mexico. ΣANs were observed to be 10–20% of NOy in the Mexico City plume and to increase in importance with increased photochemical age. We describe three conclusions: (1) Correlations of ΣANs with odd-oxygen (Ox) indicate a stronger role for ΣANs in the photochemistry of Mexico City than is expected based on currently accepted photochemical mechanisms, (2) ΣAN formation suppresses peak ozone production rates by as much as 40% in the near-field of Mexico City and (3) ΣANs play a significant role in the export of NOy from Mexico City to the Gulf Region

    Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia

    Get PDF
    As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Aerosol Characterization Experiment (ACE-Asia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the particle into liquid sampler (PILS) for measurement of a suite of fine particle a mist chamber/ion chromatograph (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and micro-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r2 of 0.95), but were systematically different by 10 ± 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low-turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an r 2 of 0.78 and a relative difference of 39% ± 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 mm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% ± 6% and correlated with an r 2 of 0.87. Most ionic compounds were within ±30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30–40%

    Quantum Pieri rules for isotropic Grassmannians

    Full text link
    We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert class with certain special Schubert classes. We also give presentations of these rings, with integer coefficients, in terms of special Schubert class generators and relations.Comment: 59 pages, LaTeX, 6 figure

    Optical studies of strain and defect distribution in semipolar (1(1)over-bar01) GaN on patterned Si substrates

    Get PDF
    Formation of defects in semipolar ( 11¯01 )-oriented GaN layers grown by metal-organic chemical vapor deposition on patterned Si (001) substrates and their effects on optical properties were investigated by steady-state and time-resolved photoluminescence (PL) and spectrally and spatially resolved cathodoluminescence (CL). Near-band edge emission is found to be dominant in the c +-wings of semipolar ( 11¯01 )GaN, which are mainly free from defect-related emission lines, while the c – wings contain a large number of basal stacking faults. When the advancing c+ and c — fronts meet to coalesce into a continuous film, the existing stacking faults contained in c — wings continue to propagate in the direction perpendicular to the c-axis and, as a result, the region dominated by stacking fault emission is extended to the film surface.Additional stacking faults are observed within the c+ wings, where the growing c+ wings of GaN are in contact with the SiO2 masking layer. Out-diffusion of oxygen/silicon species and concentration of strain near the contact region are considered as possible causes of the stacking fault formation. CL linescans performed along the surface and across the thickness of the non-coalesced and coalesced layers revealed that, while most of the material in the near-surface region of the non-coalesced layers is relaxed, coalescence results in nonuniform strain distribution over the layer surface. Red-shifted near-band-edge emission from the near-surface region indicates tensile stress near the surface of a coalesced layer, reaching a value of 0.3 GPa. The regions near the GaN/AlN/Si(111) interface show slightly blue shifted, broadened near-band-edge emission, which is indicative of a high concentration of free carriers possibly due to incorporation of shallow-donor impurities (Si and/or O) from the substrate or SiO2 mask. Steady-state and time-resolved PL results indicate that semipolar ( 11¯01 )GaN on patterned Si exhibits optical properties (PL intensity and carrier lifetimes) approaching to those of the state-of-the-art c-plane GaN grown using in situ SiNx nanonetwork mask on c-plane sapphire. Long PL lifetimes (∼2 ns) for the ( 11¯01 )GaN layers show that the semipolar material holds promise for light emitting and detecting devices

    A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots

    Full text link
    Excitonic spectra are calculated for free-standing, surface passivated InAs quantum dots using atomic pseudopotentials for the single-particle states and screened Coulomb interactions for the two-body terms. We present an analysis of the single particle states involved in each excitation in terms of their angular momenta and Bloch-wave parentage. We find that (i) in agreement with other pseudopotential studies of CdSe and InP quantum dots, but in contrast to k.p calculations, dot states wavefunction exhibit strong odd-even angular momentum envelope function mixing (e.g. ss with pp) and large valence-conduction coupling. (ii) While the pseudopotential approach produced very good agreement with experiment for free-standing, colloidal CdSe and InP dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted spectrum does {\em not} agree well with the measured (ensemble average over dot sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure one, and (2) while the spacing between the lowest excitons is reproduced, the spacings between higher excitons is not fit well. Discrepancy (1) could result from surface states emission. As for (2), agreement is improved when account is taken of the finite size distribution in the experimental data. (iii) We find that the single particle gap scales as R−1.01R^{-1.01} (not R−2R^{-2}), that the screened (unscreened) electron-hole Coulomb interaction scales as R−1.79R^{-1.79} (R−0.7R^{-0.7}), and that the eccitonic gap sclaes as R−0.9R^{-0.9}. These scaling laws are different from those expected from simple models.Comment: 12 postscript figure

    Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates

    Get PDF
    Formation of isoprene nitrates (INs) is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. Isoprene nitrates also represent a potentially large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Current assessments indicate that formation rates of isoprene nitrates are uncertain to a factor of 2–3 and the subsequent fate of isoprene nitrates remains largely unconstrained by laboratory, field or modeling studies. Measurements of total alkyl and multifunctional nitrates (ΣANs), NO2, total peroxy nitrates (ΣPNs), HNO3, CH2O, isoprene and other VOC were obtained from the NASA DC-8 aircraft during summer 2004 over the continental US during the INTEX-NA campaign. These observations represent the first characterization of ΣANs over a wide range of land surface types and in the lower free troposphere. ΣANs were a significant, 12–20%, fraction of NOy throughout the experimental domain and ΣANs were more abundant when isoprene was high. We use the observed hydrocarbon species to calculate the relative contributions of ΣAN precursors to their production. These calculations indicate that isoprene represents at least three quarters of the ΣAN source in the summertime continental boundary layer of the US. An observed correlation between ΣANs and CH2O is used to place constraints on nitrate yields from isoprene oxidation, atmospheric lifetimes of the resulting nitrates and recycling efficiencies of nitrates during subsequent oxidation. We find reasonable fits to the data using sets of production rates, lifetimes and recycling efficiencies of INs as follows (4.4%, 16 h, 97%), (8%, 2.5 h, 79%) and (12%, 95 min, 67%). The analysis indicates that the lifetime of ΣANs as a pool of compounds is considerably longer than the lifetime of the individual isoprene nitrates to reaction with OH, implying that the organic nitrate functionality is at least partially maintained through a second oxidation cycle

    Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XVI. A Thirteen-Year Study of Spectral Variability in NGC 5548

    Get PDF
    We present the final installment of an intensive 13-year study of variations of the optical continuum and broad H-beta emission line in the Seyfert 1 galaxy NGC 5548. The data base consists of 1530 optical continuum measurements and 1248 H-beta measurements. The H-beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction that the size of the broad-line region is proportional to the square root of the ionizing luminosity. Moreover, the apparently linear nature of the correlation between the H-beta response time and the nonstellar optical continuum arises as a consequence of the changing shape of the continuum as it varies, specifically with the optical (5100 A) continuum luminosity proportional to the ultraviolet (1350 A) continuum luminosity to the 0.56 power.Comment: 20 pages plus 4 figures. Accepted for publication in The Astrophysical Journa

    Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations

    Full text link
    We use the zero-temperature random-field Ising model to study hysteretic behavior at first-order phase transitions. Sweeping the external field through zero, the model exhibits hysteresis, the return-point memory effect, and avalanche fluctuations. There is a critical value of disorder at which a jump in the magnetization (corresponding to an infinite avalanche) first occurs. We study the universal behavior at this critical point using mean-field theory, and also present preliminary results of numerical simulations in three dimensions.Comment: 12 pages plus 2 appended figures, plain TeX, CU-MSC-747
    • …
    corecore