2,252 research outputs found

    High temperature color conductivity at next-to-leading log order

    Full text link
    The non-Abelian analog of electrical conductivity at high temperature has previously been known only at leading logarithmic order: that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling. We calculate the first sub-leading correction. This has immediate application to improving, to next-to-leading log order, both effective theories of non-perturbative color dynamics, and calculations of the hot electroweak baryon number violation rate.Comment: 47 pages, 6+2 figure

    Spin transport in the XXZ model at high temperatures: Classical dynamics versus quantum S=1/2 autocorrelations

    Full text link
    The transport of magnetization is analyzed for the classical Heisenberg chain at and especially above the isotropic point. To this end, the Hamiltonian equations of motion are solved numerically for initial states realizing harmonic-like magnetization profiles of small amplitude and with random phases. Above the isotropic point, the resulting dynamics is observed to be diffusive in a hydrodynamic regime starting at comparatively small times and wave lengths. In particular, hydrodynamic regime and diffusion constant are both found to be in quantitative agreement with close-to-equilibrium results from quantum S=1/2 autocorrelations at high temperatures. At the isotropic point, the resulting dynamics turns out to be non-diffusive at the considered times and wave lengths.Comment: 6 pages, 5 figures, accepted for publication in Europhys. Let

    Effective theories for real-time correlations in hot plasmas

    Full text link
    We discuss the sequence of effective theories needed to understand the qualitative, and quantitative, behavior of real-time correlators in ultra-relativistic plasmas. We analyze in detail the case where A is a gauge-invariant conserved current. This case is of interest because it includes a correlation recently measured in lattice simulations of classical, hot, SU(2)-Higgs gauge theory. We find that simple perturbation theory, free kinetic theory, linearized kinetic theory, and hydrodynamics are all needed to understand the correlation for different ranges of time. We emphasize how correlations generically have power-law decays at very large times due to non-linear couplings to long-lived hydrodynamic modes.Comment: 28 pages, Latex, uses revtex, epsf macro packages [Revised version: t -> sqrt{t} in a few typos on p. 10.

    Transport coefficients in high temperature gauge theories: (II) Beyond leading log

    Get PDF
    Results are presented of a full leading-order evaluation of the shear viscosity, flavor diffusion constants, and electrical conductivity in high temperature QCD and QED. The presence of Coulomb logarithms associated with gauge interactions imply that the leading-order results for transport coefficients may themselves be expanded in an infinite series in powers of 1/log(1/g); the utility of this expansion is also examined. A next-to-leading-log approximation is found to approximate the full leading-order result quite well as long as the Debye mass is less than the temperature.Comment: 38 pages, 6 figure

    Sphaleron Transition Rate in Presence of Dynamical Fermions

    Get PDF
    We investigate the effect of dynamical fermions on the sphaleron transition rate at finite temperature for the Abelian Higgs model in one spatial dimension. The fermion degrees of freedom are included through bosonization. Using a numerical simulation, we find that massless fermions do not change the rate within the measurement accuracy. Surprisingly, the exponential dependence of the sphaleron energy on the Yukawa coupling is not borne out by the transition rate, which shows a very weak dependence on the fermion mass.Comment: 20 pages, 7 figures, LaTeX, psfi

    Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation

    Get PDF
    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bodeker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by G. Moore to yield a NLLO result for the hot electroweak baryon number violation rate.Comment: 20 pages, 1 figur

    Chaotic Coupling Constants

    Full text link
    We examine some novel physical consequences of the general structure of moduli spaces of string vacua. These include (1) finiteness of the volume of the moduli space and (2) chaotic motion of the moduli in the early universe. To fix ideas we examine in detail the example of the (conjectural) dilaton-axion ``SS-duality'' of four-dimensional string compactifications. The facts (1) and (2) together might help to solve some problems with the standard scenarios for supersymmetry breaking and vacuum selection in string theory.Comment: 18 pages (4 figs), YCTP-P2-94, RU-94-2

    Transport coefficients and ladder summation in hot gauge theories

    Full text link
    We show how to compute transport coefficients in gauge theories by considering the expansion of the Kubo formulas in terms of ladder diagrams in the imaginary time formalism. All summations over Matsubara frequencies are performed and the analytical continuation to get the retarded correlators is done. As an illustration of the procedure, we present a derivation of the transport equation for the shear viscosity in the scalar theory. Assuming the Hard Thermal Loop approximation for the screening of distant collisions of the hard particles in the plasma, we derive a couple of integral equations for the effective vertices which, to logarithmic accuracy, are shown to be identical to the linearized Boltzmann equations previously found by Arnold, Moore and Yaffe.Comment: 34 pages, 7 figures v2. Added discussion on box topologies for the ladder rungs. Version to appear in Phys. Rev.

    Heavy flavor diffusion in weakly coupled N=4 Super Yang-Mills theory

    Full text link
    We use perturbation theory to compute the diffusion coefficient of a heavy quark or scalar moving in N=4 SU(N_c) Super Yang-Mills plasma to leading order in the coupling and the ratio T/M<<1. The result is compared both to recent strong coupling calculations in the same theory and to the corresponding weak coupling result in QCD. Finally, we present a compact and simple formulation of the Lagrangian of our theory, N=4 SYM coupled to a massive fundamental N=2 hypermultiplet, which is well-suited for weak coupling expansions.Comment: 22 pages, 4 figures; v3: error corrected in calculations, figures and discussion modified accordingl

    Transition temperature of a dilute homogeneous imperfect Bose gas

    Full text link
    The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift the critical temperature by an amount \Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where a_{scatt} is the scattering length and n is the density. There have been several different theoretical estimates for the numerical coefficient #. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation of O(2) phi^4 field theory in three dimensions---an effective theory which, as observed previously in the literature, can be systematically matched to the dilute Bose gas problem to reproduce non-universal quantities such as the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to improvement of analysis in the longer companion pape
    • …
    corecore