38 research outputs found

    Electrochemical intercalation and electrical conductivity of graphite fibers

    Get PDF
    Lamellar compounds of graphite fibers were prepared by electrochemical intercalation. The dependence of the electrical resistance on the intercalate concentration was determined by a quasi simultaneous method. A factor 30 decrease of the relative fiber resistance was obtained with fluorosulfuric acid

    Alkylated-C-60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching

    Get PDF
    Derivatization of fullerene (C60) with branched aliphatic chains softens C60-based materials and enables the formation of thermotropic liquid crystals and room temperature nonvolatile liquids. This work demonstrates that by carefully tuning parameters such as type, number and substituent position of the branched chains, liquid crystalline C60 materials with mesophase temperatures suited for photovoltaic cell fabrication and room temperature nonvolatile liquid fullerenes with tunable viscosity can be obtained. In particular, compound 1, with branched chains, exhibits a smectic liquid crystalline phase extending from 84 °C to room temperature. Analysis of bulk heterojunction (BHJ) organic solar cells with a ca. 100 nm active layer of compound 1 and poly(3-hexylthiophene) (P3HT) as an electron acceptor and an electron donor, respectively, reveals an improved performance (power conversion efficiency, PCE: 1.6 ± 0.1%) in comparison with another compound, 10 (PCE: 0.5 ± 0.1%). The latter, in contrast to 1, carries linear aliphatic chains and thus forms a highly ordered solid lamellar phase at room temperature. The solar cell performance of 1 blended with P3HT approaches that of PCBM/P3HT for the same active layer thickness. This indicates that C60 derivatives bearing branched tails are a promising class of electron acceptors in soft (flexible) photovoltaic devices

    Elektrochemische Intercalation von Graphit, Kohlenstoffasern und Polyacetylen

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Preparation of protein microcapsules with narrow size distribution by sonochemical method

    No full text
    corecore