191 research outputs found

    Effect of Sugar Palm Fiber Surface on Interfacial Bonding with Natural Sago Matrix

    Get PDF
    Palm fibers were immersed in sea water for 1, 2, 3, and 4 weeks prior to application as reinforcement of green biocomposite. Instead of common resin matrix, natural sago starch was applied as the matrix compound. The immersion treatments had significantly affected fibers surface morphology and interfacial bonds of fiber and the matrix as observed through Scanning Electron Microscopy (SEM). The quality of interfacial bonds became higher by additional duration of the sea water immersion. The best interlocking surfaces of fibers and matrix appeared in the composite with 4-week immersed fibers, indicated by disappearance of gaps between fiber and matrix. The morphology of fibers surface interlocking process was clearly seen during the duration of immersion

    Age effect on retina and optic disc normal values

    Get PDF
    Purpose: To investigate retinal thickness and optic disc parameters by the Retinal Thickness Analyzer (RTA) glaucoma program in older normal subjects and to determine any age effect. Methods: Subjects over 40 years of age without any prior history of eye diseases were recruited. Only subjects completely normal on clinical ophthalmologic examination and on visual field testing by Humphrey Field Analyzer (HFA) using the SITA 24-2 program were included. A total of 74 eyes from 74 subjects with even age distribution over the decades were enrolled and underwent topographic measurements of the posterior pole and of the optic disc by RTA. The `glaucoma full' program in software version 4.11B was applied. Results: Mean patient age was 59.9 +/- 10.3 years with a range from 40 to 80 years. The only parameter intraocular pressure (IOP) correlated with was retinal posterior pole asymmetry (r=0.27, p=0.02). IOP itself increased significantly with age (r=0.341, p=0.003). Mean defect and pattern standard deviation of the HFA did not correlate with any of the retinal or optic disc measurements. Increasing age correlated significantly with some of the morphologic measurements of the RTA: decreasing perifoveal minimum thickness (r=-0.258, p=0.026), increased cup-to-disc area ratio (r=0.302, p=0.016) and increased cup area (r=0.338 p=0.007). Conclusions: An age effect exists for some of the retina and optic disc measurements obtained by the RTA. Copyright (C) 2005 S. Karger AG, Basel

    Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis

    Get PDF
    Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics

    Histone Acetylation-Mediated Regulation of the Hippo Pathway

    Get PDF
    The Hippo pathway is a signaling cascade recently found to play a key role in tumorigenesis therefore understanding the mechanisms that regulate it should open new opportunities for cancer treatment. Available data indicate that this pathway is controlled by signals from cell-cell junctions however the potential role of nuclear regulation has not yet been described. Here we set out to verify this possibility and define putative mechanism(s) by which it might occur. By using a luciferase reporter of the Hippo pathway, we measured the effects of different nuclear targeting drugs and found that chromatin-modifying agents, and to a lesser extent certain DNA damaging drugs, strongly induced activity of the reporter. This effect was not mediated by upstream core components (i.e. Mst, Lats) of the Hippo pathway, but through enhanced levels of the Hippo transducer TAZ. Investigation of the underlying mechanism led to the finding that cancer cell exposure to histone deacetylase inhibitors induced secretion of growth factors and cytokines, which in turn activate Akt and inhibit the GSK3 beta associated protein degradation complex in drug-affected as well as in their neighboring cells. Consequently, expression of EMT genes, cell migration and resistance to therapy were induced. These processes were suppressed by using pyrvinium, a recently described small molecule activator of the GSK 3 beta associated degradation complex. Overall, these findings shed light on a previously unrecognized phenomenon by which certain anti-cancer agents may paradoxically promote tumor progression by facilitating stabilization of the Hippo transducer TAZ and inducing cancer cell migration and resistance to therapy. Pharmacological targeting of the GSK3 beta associated degradation complex may thus represent a unique approach to treat cancer. © 2013 Basu et al

    Association of LOXL1 common sequence variants in German and Italian patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma

    Get PDF
    purpose. Three common sequence variants in the lysyl oxidase-like 1 (LOXL1) gene were recently associated with both pseudoexfoliation (PEX) and pseudoexfoliation glaucoma (PEXG) in populations from Iceland and Sweden. In this study, the genetic association of these variants was investigated in patients with PEX or PEXG of German and Italian descent. methods. The three LOXL1 single-nucleotide polymorphisms (SNPs), one intronic (rs2165241) and two nonsynonymous coding SNPs (rs1048661: R141L and rs3825942: G153D) were genotyped in a total of 726 unrelated patients with PEX or PEXG (517 Germans and 209 Italians) and 418 healthy subjects who had normal findings in repeated ophthalmic examinations, and a genetic association study was performed. results. Strong association with the three LOXL1 common sequence variants was seen in both the PEX and PEXG patient groups independent of their geographic origin (rs2165241, combined OR = 3.42, P = 1.28 × 10−40; rs1048661, OR = 2.43, P = 2.90 × 10−19; and rs3825942, OR = 4.87, P = 8.22 × 10−23). Similarly, the common frequent haplotype (G-G) composed of the two coding SNPs (rs1048661 and rs3825942) was strongly associated in PEX and PEXG cohorts of both populations with the disease (combined OR = 3.58, P = 5.21× 10−43). conclusions. Genetic variants in LOXL1 confer risk to PEX in German and Italian populations, independent of the presence of secondary glaucoma, confirming findings in patients from Northern Europe

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Profiling of WDR36 Missense Variants in German Patients with Glaucoma

    Get PDF
    PURPOSE. Mutations in WDR36 were recently reported in patients with adult-onset primary open-angle glaucoma (POAG). In this study, the prevalence of WDR36 variants was investigated in patients with glaucoma who were of German descent with diverse age of onset and intraocular pressure levels. METHODS. Recruited were 399 unrelated patients with glaucoma and 376 healthy subjects of comparable age and origin, who had had repeated normal findings in ophthalmic examinations. The frequency of observed variants was obtained by direct sequencing of the entire WDR36 coding region. RESULTS. A total of 44 WDR36 allelic variants were detected, including 14 nonsynonymous amino acid alterations, of which 7 are novel (P31T, Y97C, D126N, T403A, H411Y, H411L, and P487R) and 7 have been reported (L25P, D33E, A163V, H212P, A449T, D658G and I264V). Of these 14 variants, 6 were classified as polymorphisms as they were detected in patients and control individuals at similar frequencies. Eight variants present in 15 patients (3.7%) but only 1 control individual (0.2%) were defined as putative disease-causing variants (P 0.0005). Within this patient group, 12 (80%) presented with high and 3 (20%) with low intraocular pressure. Disease severity and age of onset showed a broad range. CONCLUSIONS. The occurrence of several rare putative diseasecausing variants in patients with glaucoma suggests that WDR36 may be a minor disease-causing gene in glaucoma, at least in the German population. The large variability in WDR36, though, requires functional validation of these variants, once its function is characterized.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    Heterozygous Loss-of-Function Variants in CYP1B1 Predispose to Primary Open-Angle Glaucoma

    Get PDF
    Purpose.: Although primary congenital glaucoma (PCG)–associated CYP1B1 mutations in the heterozygous state have been evaluated for association with primary open-angle glaucoma (POAG) in several small studies, their contribution to the occurrence of POAG is still controversial. The present study was conducted to determine whether heterozygous functionally characterized CYP1B1 mutations are associated with the disease in a large cohort of German patients with POAG. Methods.: The frequency of CYP1B1 variants on direct sequencing of the entire coding region was compared in 399 unrelated German patients with POAG (270, POAG; 47, JOAG; and 82, NTG) and 376 control subjects without any signs of glaucoma on ophthalmic examination. In vitro functional assays were performed and relative enzymatic activity of the CYP1B1 variants embedded in their respective background haplotypes and not previously unambiguously classified were determined, to assess their possible causative role. Results.: Apart from known polymorphic variants, 11 amino acid substitutions in CYP1B1 reported before, both in PCG and POAG cases, were identified. After in vitro functional assay, variants P52L and R368H showed marked reduction of activity, confirming their role as loss-of-function mutations similar to previously determined variants G61E, N203S, and G329V. In contrast, variants G168D, A443G, and A465V showed no relevant effects and were thus classified as polymorphisms. Overall, seven functionally impaired variants were present in 13 (3.6%) patients and in 1 (0.2%) control subject (P = 0.002, OR = 5.4). Reanalysis of previous studies reporting CYP1B1 mutations in patients with POAG based on updated functional validation showed a significant excess of carriers among patients compared to controls (OR = 3.85; P = 2.3 × 10−7). Conclusions.: Heterozygous CYP1B1 mutations with absent or reduced relative enzymatic activity can be considered a risk factor for POAG.German Research Foundation/[WE1259/14-3]/DFG/GermanyGerman Research Foundation/[SFB-539]/DFG/GermanyUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM

    Exploring functional candidate genes for genetic association in German patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma

    Get PDF
    purpose. Pseudoexfoliation (PEX) syndrome is a generalized elastic microfibrillopathy characterized by fibrillar deposits in intra- and extraocular tissues. Genetic and nongenetic factors are known to be involved in its etiopathogenesis. This study was focused on six functional candidate genes involved in PEX material deposition and the analysis of their potential association with PEX syndrome and PEX glaucoma (PEXG). methods. Fifty single-nucleotide polymorphisms (SNPs) capturing >95% of overall genetic variance observed in Europeans at loci for FBN1, LTBP2, MFAP2, TGM2, TGF-b1, and CLU were genotyped in 333 unrelated PEX-affected and 342 healthy individuals of German origin, and a genetic association study was performed. To replicate the findings, two SNPs of the CLU gene were genotyped in a further 328 unrelated German patients with PEX as well as in 209 Italian patients with PEX and 190 Italian control subjects. results. Association with PEX was observed only for the SNP rs2279590 in intron 8 of the CLU gene coding for clusterin (corrected P = 0.0347, OR = 1.34) in our first German cohort. Likewise, a frequent haplotype encompassing the associated risk allele showed nominally significant association. None of remaining SNPs or SNP haplotypes were associated with PEX. The association found was confirmed in a second German cohort (P = 0.0244) but not in the Italian cohort (P = 0.7173). In addition, the association with CLU SNP rs2279590 was more significant in German patients with PEX syndrome than in those with PEXG. conclusions. Genetic variants in the gene encoding clusterin may represent a risk factor for PEX in German patients but not in Italian patients. Variants in FBN1, LTBP2, MFAP2, TGF-b1, and TGM2 do not play a major role in the etiology of PEX syndrome, at least in German patients

    The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability.

    Get PDF
    It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions
    corecore