6,854 research outputs found
Time-symmetric fluctuations in nonequilibrium systems
For nonequilibrium steady states, we identify observables whose fluctuations
satisfy a general symmetry and for which a new reciprocity relation can be
shown. Unlike the situation in recently discussed fluctuation theorems, these
observables are time-reversal symmetric. That is essential for exploiting the
fluctuation symmetry beyond linear response theory. Besides time-reversal, a
crucial role is played by the reversal of the driving fields, that further
resolves the space-time action. In particular, the time-symmetric part in the
space-time action determines second order effects of the nonequilibrium
driving.Comment: 4 page
The random geometry of equilibrium phases
This is a (long) survey about applications of percolation theory in
equilibrium statistical mechanics. The chapters are as follows:
1. Introduction
2. Equilibrium phases
3. Some models
4. Coupling and stochastic domination
5. Percolation
6. Random-cluster representations
7. Uniqueness and exponential mixing from non-percolation
8. Phase transition and percolation
9. Random interactions
10. Continuum modelsComment: 118 pages. Addresses: [email protected]
http://www.mathematik.uni-muenchen.de/~georgii.html [email protected]
http://www.math.chalmers.se/~olleh [email protected]
A nonequilibrium extension of the Clausius heat theorem
We generalize the Clausius (in)equality to overdamped mesoscopic and
macroscopic diffusions in the presence of nonconservative forces. In contrast
to previous frameworks, we use a decomposition scheme for heat which is based
on an exact variant of the Minimum Entropy Production Principle as obtained
from dynamical fluctuation theory. This new extended heat theorem holds true
for arbitrary driving and does not require assumptions of local or close to
equilibrium. The argument remains exactly intact for diffusing fields where the
fields correspond to macroscopic profiles of interacting particles under
hydrodynamic fluctuations. We also show that the change of Shannon entropy is
related to the antisymmetric part under a modified time-reversal of the
time-integrated entropy flux.Comment: 23 pages; v2: manuscript significantly extende
A meaningful expansion around detailed balance
We consider Markovian dynamics modeling open mesoscopic systems which are
driven away from detailed balance by a nonconservative force. A systematic
expansion is obtained of the stationary distribution around an equilibrium
reference, in orders of the nonequilibrium forcing. The first order around
equilibrium has been known since the work of McLennan (1959), and involves the
transient irreversible entropy flux. The expansion generalizes the McLennan
formula to higher orders, complementing the entropy flux with the dynamical
activity. The latter is more kinetic than thermodynamic and is a possible
realization of Landauer's insight (1975) that, for nonequilibrium, the relative
occupation of states also depends on the noise along possible escape routes. In
that way nonlinear response around equilibrium can be meaningfully discussed in
terms of two main quantities only, the entropy flux and the dynamical activity.
The expansion makes mathematical sense as shown in the simplest cases from
exponential ergodicity.Comment: 19 page
On the validity of entropy production principles for linear electrical circuits
We discuss the validity of close-to-equilibrium entropy production principles
in the context of linear electrical circuits. Both the minimum and the maximum
entropy production principle are understood within dynamical fluctuation
theory. The starting point are Langevin equations obtained by combining
Kirchoff's laws with a Johnson-Nyquist noise at each dissipative element in the
circuit. The main observation is that the fluctuation functional for time
averages, that can be read off from the path-space action, is in first order
around equilibrium given by an entropy production rate. That allows to
understand beyond the schemes of irreversible thermodynamics (1) the validity
of the least dissipation, the minimum entropy production, and the maximum
entropy production principles close to equilibrium; (2) the role of the
observables' parity under time-reversal and, in particular, the origin of
Landauer's counterexample (1975) from the fact that the fluctuating observable
there is odd under time-reversal; (3) the critical remark of Jaynes (1980)
concerning the apparent inappropriateness of entropy production principles in
temperature-inhomogeneous circuits.Comment: 19 pages, 1 fi
Thermoelectric phenomena via an interacting particle system
We present a mesoscopic model for thermoelectric phenomena in terms of an
interacting particle system, a lattice electron gas dynamics that is a suitable
extension of the standard simple exclusion process. We concentrate on
electronic heat and charge transport in different but connected metallic
substances. The electrons hop between energy-cells located alongside the
spatial extension of the metal wire. When changing energy level, the system
exchanges energy with the environment. At equilibrium the distribution
satisfies the Fermi-Dirac occupation-law. Installing different temperatures at
two connections induces an electromotive force (Seebeck effect) and upon
forcing an electric current, an additional heat flow is produced at the
junctions (Peltier heat). We derive the linear response behavior relating the
Seebeck and Peltier coefficients as an application of Onsager reciprocity. We
also indicate the higher order corrections. The entropy production is
characterized as the anti-symmetric part under time-reversal of the space-time
Lagrangian.Comment: 19 pages, 2 figures, submitted to Journal of Physics
Dynamical fluctuations for semi-Markov processes
We develop an Onsager-Machlup-type theory for nonequilibrium semi-Markov
processes. Our main result is an exact large time asymptotics for the joint
probability of the occupation times and the currents in the system,
establishing some generic large deviation structures. We discuss in detail how
the nonequilibrium driving and the non-exponential waiting time distribution
influence the occupation-current statistics. The violation of the Markov
condition is reflected in the emergence of a new type of nonlocality in the
fluctuations. Explicit solutions are obtained for some examples of driven
random walks on the ring.Comment: Minor changes, accepted for publication in Journal of Physics
On the basic mechanism of Pixelized Photon Detectors
A Pixelized Photon Detector (PPD) is a generic name for the semiconductor
devices operated in the Geiger-mode, such as Silicon PhotoMultiplier and
Multi-Pixel Photon Counter, which has high photon counting capability. While
the internal mechanisms of the PPD have been intensively studied in recent
years, the existing models do not include the avalanche process. We have
simulated the multiplication and quenching of the avalanche process and have
succeeded in reproducing the output waveform of the PPD. Furthermore our model
predicts the existence of dead-time in the PPD which has never been numerically
predicted. For serching the dead-time, we also have developed waveform analysis
method using deconvolution which has the potential to distinguish neibouring
pulses precisely. In this paper, we discuss our improved model and waveform
analysis method.Comment: 4pages, 5figures, To appear in the proceedings of 5th International
Conference on New Developments in Photodetection (NDIP08), Aix-les-Bains,
France, 15-20 Jun 200
Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways
It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers
- …