63,240 research outputs found

    A consistent approximation scheme beyond RPA for bosons

    Full text link
    In this paper, we develop a consistent extension of RPA for bosonic systems. In order to illustrate the method, we consider the case of the anharmonic oscillator. We compare our results with those obtained in mean-field and standard RPA approaches, with the exact ones and show that they are very close to the exact ones.Comment: 19 pages, Latex, 1 figure, accepted version in EPJ

    Mode expansion for the density profile of crystal-fluid interfaces: Hard spheres as a test case

    Full text link
    We present a technique for analyzing the full three-dimensional density profiles of a planar crystal-fluid interface in terms of density modes. These density modes can also be related to crystallinity order parameter profiles which are used in coarse-grained, phase field type models of the statics and dynamics of crystal-fluid interfaces and are an alternative to crystallinity order parameters extracted from simulations using local crystallinity criteria. We illustrate our results for the hard sphere system using finely-resolved, three-dimensional density profiles from density functional theory of fundamental measure type.Comment: submitted for the special issue of the CODEF III conferenc

    Observational constraint on the fourth derivative of the inflaton potential

    Get PDF
    We consider the flow-equations for the 3 slow-roll parameters n_S (scalar spectral index), r (tensor to scalar ratio), and dn_S/dlnk (running of the spectral index). We show that the combination of these flow-equations with the observational bounds from cosmic microwave background and large scale structure allows one to put a lower bound on the fourth derivative of the inflationary potential, M_P^4(V''''/V) > -0.02.Comment: 3 pages, 3 figure

    Shear Viscosity of Quark Matter

    Full text link
    We consider the shear viscosity of a system of quarks and its ratio to the entropy density above the critical temperature for deconfinement. Both quantities are derived and computed for different modeling of the quark self-energy, also allowing for a temperature dependence of the effective mass and width. The behaviour of the viscosity and the entropy density is argued in terms of the strength of the coupling and of the main characteristics of the quark self-energy. A comparison with existing results is also discussed.Comment: 15 pages, 4 figure

    Point-Source Power in 3 Year Wilkinson Microwave Anisotropy Probe Data

    Get PDF
    Using a set of multifrequency cross spectra computed from the 3 year WMAP sky maps, we fit for the unresolved point-source contribution. For a white-noise power spectrum, we find a Q-band amplitude of A = 0.011 ± 0.001 ÎŒK^2 sr (antenna temperature), significantly smaller than the value of 0.017 ± 0.002 ÎŒK^2 sr used to correct the spectra in the WMAP release. Modifying the point-source correction in this way largely resolves the discrepancy that Eriksen et al. found between the WMAP V- and W-band power spectra. Correcting the co-added WMAP spectrum for both the low-l power excess due to a suboptimal likelihood approximation—also reported by Eriksen et al.—and the high-l power deficit due to oversubtracted point sources—presented in this Letter—we find that the net effect in terms of cosmological parameters is an ~0.7 σ shift in n_s to larger values. For the combination of WMAP, BOOMERANG, and ACBAR data, we find ns = 0.969 ± 0.016, lowering the significance of n_s ≠ 1 from ~2.7 σ to ~2.0 σ

    Alloreactive cytotoxic T lymphocytes generated in the presence of viral- derived peptides show exquisite peptide and MHC specificity

    Get PDF
    The nature of alloreactivity to MHC molecules has been enigmatic, primarily because of the observation that allogeneic responses are considerably stronger than syngeneic responses. To better determine the specificity potential of allogeneic responses, we have generated alloreactive CTL specific for exogenous, viral-derived peptide ligands. This approach allowed us to critically evaluate both the peptide- and MHC-specificity of these alloreactive T cells. Exploiting the accessibility of the H-2Ld class I molecule for exogenous peptide ligands, alloreactive CTL were generated that are specific for either murine cytomegalovirus (MCMV) or lymphocytic choriomeningitis virus (LCMV) peptides bound by Ld alloantigens. Peptide specificity was initially observed in bulk cultures of alloreactive CTL only when tested on peptide-sensitized T2.Ld target cells that have defective presentation of endogenous peptides. Subsequent cloning of bulk alloreactive CTL lines generated to MCMV yielded CTL clones that had exquisitely specific MCMV peptide recognition requirement. All of the MCMV/Ld alloreactive CTL clones were also exquisitely MHC-specific in that none of the CTL clones lysed targets expressing MCMV/Lq complexes, even though Lq differs from Ld by only six amino acid residues and Lq also binds the MCMV peptide. This observation clearly demonstrates that alloreactive CTL are capable of the same degree of specificity for target cell recognition as are syngeneic CTL in MHC-restricted responses

    Why does the Jeans Swindle work?

    Full text link
    When measuring the mass profile of any given cosmological structure through internal kinematics, the distant background density is always ignored. This trick is often refereed to as the "Jeans Swindle". Without this trick a divergent term from the background density renders the mass profile undefined, however, this trick has no formal justification. We show that when one includes the expansion of the Universe in the Jeans equation, a term appears which exactly cancels the divergent term from the background. We thereby establish a formal justification for using the Jeans Swindle.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letter

    Kinetic theory of cluster impingement in the framework of statistical mechanics of rigid disks

    Full text link
    The paper centres on the evaluation of the function n(theta)=N(theta)/N0, that is the normalized number of islands as a function of coverage 0<theta<1, given N0 initial nucleation centres (dots) having any degree of spatial correlation. A mean field approach has been employed: the islands have the same size at any coverage. In particular, as far as the random distribution of dots is concerned, the problem has been solved by considering the contribution of binary collisions between islands only. With regard to correlated dots, we generalize a method previously applied to the random case only. In passing, we have made use of the exclusion probability reported in [S. Torquato, B. Lu, J. Rubinstein, Phys.Rev.A 41, 2059 (1990)], for determining the kinetics of surface coverage in the case of correlated dots, improving our previous calculation [M. Tomellini, M. Fanfoni, M. Volpe Phys. Rev.B 62, 11300, (2000)].Comment: 10 pages, 3 figure

    Mesonic correlation functions at finite temperature and density in the Nambu-Jona-Lasinio model with a Polyakov loop

    Get PDF
    We investigate the properties of scalar and pseudo-scalar mesons at finite temperature and quark chemical potential in the framework of the Nambu-Jona-Lasinio (NJL) model coupled to the Polyakov loop (PNJL model) with the aim of taking into account features of both chiral symmetry breaking and deconfinement. The mesonic correlators are obtained by solving the Schwinger-Dyson equation in the RPA approximation with the Hartree (mean field) quark propagator at finite temperature and density. In the phase of broken chiral symmetry a narrower width for the sigma meson is obtained with respect to the NJL case; on the other hand, the pion still behaves as a Goldstone boson. When chiral symmetry is restored, the pion and sigma spectral functions tend to merge. The Mott temperature for the pion is also computed.Comment: 24 pages, 9 figures, version to appear in Phys. Rev.

    The QCD Critical End Point in the Context of the Polyakov--Nambu--Jona-Lasinio Model

    Full text link
    We investigate the phase diagram of the so-called Polyakov--Nambu--Jona-Lasinio model at finite temperature and nonzero chemical potential with three quark flavors. Chiral and deconfinement phase transitions are discussed, and the relevant order-like parameters are analyzed. A special attention is payed to the critical end point (CEP): the influence of the strangeness on the location of the CEP is studied; also the strength of the flavor-mixing interaction alters the CEP location, once when it becomes weaker the CEP moves to low temperatures and can even disappear.Comment: Prepared for Strangeness in Quark Matter 2011, Sept. 18--24, Cracow, Polan
    • 

    corecore