3,958 research outputs found

    Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies

    Get PDF
    Herbivore-induced plant defences influence the behaviour of herbivores as well as that of their natural enemies. Jasmonic acid is one of the key hormones involved in both these direct and indirect induced defences. Jasmonic acid treatment of plants changes the composition of defence chemicals in the plants, induces volatile emission, and increases the production of extrafloral nectar. However, few studies have addressed the potential influence of induced defences on flower nectar chemistry and pollinator behaviour. These have shown that herbivore damage can affect pollination rates and plant fitness. Here, we have investigated the effect of jasmonic acid treatment on floral nectar production and the attraction of pollinators, as well as the effect on the behaviour of an herbivore and its natural enemy. The study system consisted of black mustard plants, Brassica nigra L. (Brassicaceae), pollinators of Brassica nigra (i.e., honeybees and syrphid flies), a specialist herbivore, Pieris rapae L. (Lepidoptera: Pieridae), and a parasitoid wasp that uses Pieris larvae as hosts, Cotesia glomerata L. (Hymenoptera: Braconidae). We show that different trophic levels are differentially affected by jasmonic acid-induced changes. While the herbivore prefers control leaves over jasmonic acid-treated leaves for oviposition, the parasitoid C. glomerata is more attracted to jasmonic acid-treated plants than to control plants. We did not observe differences in pollinator preference, the rates of flower visitation by honeybees and syrphid flies were similar for control and jasmonic acid-treated plants. Plants treated with jasmonic acid secreted less nectar than control plants and the concentrations of glucose and fructose tended to be lower than in nectar from control plants. Jasmonic acid treatment resulted in a lower nectar production than actual feeding damage by P. rapae caterpillars

    Plasmons in strongly correlated systems: spectral weight transfer and renormalized dispersion

    Get PDF
    We study the charge-density dynamics within the two-dimensional extended Hubbard model in the presence of long-range Coulomb interaction across the metal-insulator transition point. To take into account strong correlations we start from self-consistent extended dynamical mean-field theory and include non-local dynamical vertex corrections through a ladder approximation to the polarization operator. This is necessary to fulfill charge conservation and to describe plasmons in the correlated state. The calculated plasmon spectra are qualitatively different from those in the random-phase approximation: they exhibit a spectral density transfer and a renormalized dispersion with enhanced deviation from the canonical q\sqrt{q}-behavior. Both features are reminiscent of interaction induced changes found in single-electron spectra of strongly correlated systems.Comment: 5 pages, 5 figures + appendix (3 pages, 1 figure

    Conservation in two-particle self-consistent extensions of dynamical-mean-field-theory

    Full text link
    Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity models as non-perturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded interactions on the impurity, these approximations can be made two-particle self-consistent. This is of interest for the Hubbard model, because it allows to suppress the antiferromagnetic phase transition in two-dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving. In this paper we show that the mutual requirements of two-particle self-consistency and conservation lead to fundamental problems. For an approximation that is two-particle self-consistent in the charge- and longitudinal spin channel, the double occupancy of the lattice and the impurity are no longer consistent when computed from single-particle properties. For the case of self-consistency in the charge- and longitudinal as well as transversal spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.Comment: 17 pages, 9 figure

    Automated Driving and its Effect on the Safety Ecosystem: How do Compatibility Issues Affect the Transition Period?

    Get PDF
    AbstractDifferent components of automated vehicles are being made available commercially as we speak. Much research has been conducted into these components and many of these have been studied with respect to their effects on safety, but the transition period from non-automated driving to fully automated vehicles raises safety related issues dealing with mixed traffic situations. More in-depth knowledge should be gained in (the safety of) the behaviour of drivers of unequipped vehicles, enabling automated vehicles to predict and adequately respond to potentially unsafe behaviour, a concept we call backwards compatibility. Also, automated vehicle system design tends to be from an optimal system performance perspective which leads to driving patterns such as driving in the centre of a lane. Other (human) road users however likely exhibit driving behaviour in line with different rationales which allow for suboptimal driving patterns. As of yet, it remains unclear whether these patterns contain indications about the intentions of a driver and if or how other road users anticipate these. This could have two consequences with regard to mixed traffic situations. First of all, other road users might miss important cues from the behaviour of the automated vehicle (what we call forward incompatibility). Secondly, the occupant of an automated vehicle might expect human-like behaviour from the automated vehicle in safety-critical situations, lowering acceptance if this does not meet expectations. The current paper considers these issues and states that we need more insight in how road users use other road users’ behaviour to anticipate safety critical events, especially in the transition period towards fully automated vehicles

    Examining on-task regulation in school children: Interrelations between monitoring, regulation, and task performance

    Get PDF
    It is unknown how multiple components of on-task regulation of learning affect task performance in school children. This research aimed to acquire insights into the interrelations between children’s metacognitive monitoring, regulation of learning, and task performance. Three components of on-task regulation of learning were investigated: allocation of study time, restudy selections, and task persistence. Children learned concepts with their definitions. In Study 1, 104 sixth graders (Mage 12 years) participated; Study 2 consisted of 97 fourth graders (Mage 10 years). For both age groups, task persistence was a strong predictor of performance. For sixth but not for fourth graders, monitoring accuracy affected performance. Findings indicate that, when aiming to improve regulation of learning and task performance in elementary school, student age is a relevant factor to consider. Around the age of 10, regulation affects learning performance, whereas the effects of self-monitoring accuracy on performance seem apparent when children are approximately 12 years of age

    Stellar Populations and Mass-Loss in M15: A Spitzer Detection of Dust in the Intra-Cluster Medium

    Get PDF
    We present Spitzer Space Telescope IRAC and MIPS observations of the galactic globular cluster M15 (NGC 7078), one of the most metal-poor clusters with a [Fe/H] = -2.4. Our Spitzer images reveal a population of dusty red giants near the cluster center, a previously detected planetary nebula (PN) designated K648, and a possible detection of the intra-cluster medium (ICM) arising from mass loss episodes from the evolved stellar population. Our analysis suggests 9 (+/-2) x 10^-4 solar masses of dust is present in the core of M15, and this material has accumulated over a period of approximately 10^6 years, a timescale ten times shorter than the last galactic plane crossing event. We also present Spitzer IRS follow up observations of K648, including the detection of the [NeII] 12.81 micron line, and discuss abundances derived from infrared fine structure lines.Comment: Accepted for publication in AJ. 20 pages, 10 figures, 6 tables. Full resolution versions of figures 1, 5, 7, and 8 are available in a PDF version of this manuscript at http://ir.astro.umn.edu/~mboyer/ms_060906.pd
    • …
    corecore