40 research outputs found
A detector for continuous measurement of ultra-cold atoms in real time
We present the first detector capable of recording high-bandwidth real time
atom number density measurements of a Bose Einstein condensate. Based on a
two-color Mach-Zehnder interferometer, our detector has a response time that is
six orders of magnitude faster than current detectors based on CCD cameras
while still operating at the shot-noise limit. With this minimally destructive
system it may be possible to implement feedback to stabilize a Bose-Einstein
condensate or an atom laser.Comment: 3 pages, 3 figures, submitted to optics letter
RF spectroscopy in a resonant RF-dressed trap
We study the spectroscopy of atoms dressed by a resonant radiofrequency (RF)
field inside an inhomogeneous magnetic field and confined in the resulting
adiabatic potential. The spectroscopic probe is a second, weak, RF field. The
observed line shape is related to the temperature of the trapped cloud. We
demonstrate evaporative cooling of the RF-dressed atoms by sweeping the
frequency of the second RF field around the Rabi frequency of the dressing
field.Comment: 7 figures, 8 pages; to appear in J. Phys.
Rubidium-87 Bose-Einstein condensate in an optically plugged quadrupole trap
We describe an experiment to produce 87Rb Bose-Einstein condensates in an
optically plugged magnetic quadrupole trap, using a blue-detuned laser. Due to
the large detuning of the plug laser with respect to the atomic transition, the
evaporation has to be carefully optimized in order to efficiently overcome the
Majorana losses. We provide a complete theoretical and experimental study of
the trapping potential at low temperatures and show that this simple model
describes well our data. In particular we demonstrate methods to reliably
measure the trap oscillation frequencies and the bottom frequency, based on
periodic excitation of the trapping potential and on radio-frequency
spectroscopy, respectively. We show that this hybrid trap can be operated in a
well controlled regime that allows a reliable production of degenerate gases.Comment: 13 pages, 8 figure
Roadmap on Atomtronics: State of the art and perspective
Atomtronics deals with matter-wave circuits of ultracold atoms manipulated through magnetic or laser-generated guides with different shapes and intensities. In this way, new types of quantum networks can be constructed in which coherent fluids are controlled with the know-how developed in the atomic and molecular physics community. In particular, quantum devices with enhanced precision, control, and flexibility of their operating conditions can be accessed. Concomitantly, new quantum simulators and emulators harnessing on the coherent current flows can also be developed. Here, the authors survey the landscape of atomtronics-enabled quantum technology and draw a roadmap for the field in the near future. The authors review some of the latest progress achieved in matter-wave circuits' design and atom-chips. Atomtronic networks are deployed as promising platforms for probing many-body physics with a new angle and a new twist. The latter can be done at the level of both equilibrium and nonequilibrium situations. Numerous relevant problems in mesoscopic physics, such as persistent currents and quantum transport in circuits of fermionic or bosonic atoms, are studied through a new lens. The authors summarize some of the atomtronics quantum devices and sensors. Finally, the authors discuss alkali-earth and Rydberg atoms as potential platforms for the realization of atomtronic circuits with special features
Recommended from our members
RF spectroscopy in a resonant RF-dressed trap
We study the spectroscopy of atoms dressed by a resonant radiofrequency (RF) field inside an inhomogeneous magnetic field and confined in the resulting adiabatic potential. The spectroscopic probe is a second, weak, RF field. The observed line shape is related to the temperature of the trapped cloud. We demonstrate evaporative cooling of the RF-dressed atoms by sweeping the frequency of the second RF field around the Rabi frequency of the dressing field