180 research outputs found

    Pembrolizumab for locally advanced or metastatic urothelial cancer where cisplatin is unsuitable: an evidence review group perspective of a NICE single technology appraisal

    Get PDF
    As part of its Single Technology Appraisal (STA) process, the National Institute for Health and Care Excellence (NICE) invited the manufacturer (Merck Sharp & Dohme) of pembrolizumab (Keytruda®) to submit evidence of its clinical and cost effectiveness for the treatment of locally advanced or metastatic urothelial cancer where cisplatin is unsuitable. The School of Health and Related Research Technology Appraisal Group at the University of Sheffield was commissioned to act as the independent Evidence Review Group (ERG). The ERG produced a detailed review of the evidence for the clinical and cost effectiveness of the technology, based on the company’s submission (CS) to NICE. The clinical effectiveness evidence in the CS for pembrolizumab was based on one phase II, single-arm, open-label, non-randomised study (KEYNOTE-052), while the evidence for the comparator (carboplatin plus gemcitabine) was based on four studies, including one randomised controlled trial and three cohort studies. In the absence of head-to-head trials, the company conducted an indirect treatment comparison for both progression-free survival (PFS) and overall survival (OS), by firstly adjusting cross-study differences using a simulated treatment comparison approach and then synthesizing the evidence based on an assumption of constant hazard ratios using a standard meta-analysis model and time-varying hazard ratios using fractional polynomial models. The treatment effect of pembrolizumab was more favourable in the adjusted population compared with the observed effect in the KEYNOTE-052 study. The company submitted a de novo partitioned survival cohort simulation model, which partitions the OS time into PFS and post-progression survival. The probabilistic incremental cost-effectiveness ratio (ICER) for pembrolizumab compared with carboplatin plus gemcitabine was estimated to be £37,081 per quality-adjusted life-year (QALY) gained, based on the results within the company’s health economic model. Following a critique of the model, for their preferred base case the ERG corrected some minor model errors, chose a progression approach for estimating utilities, and revised the extrapolation of PFS and OS. The ERG’s probabilistic base case ICER was estimated to be £67,068 per QALY gained. The ERG also undertook a range of exploratory sensitivity analyses which suggested that the ICER was highly uncertain. In particular, the choices of extrapolation for the OS of pembrolizumab and the stopping rule for pembrolizumab had the largest impacts on the ICER. The NICE Appraisal Committee recommended pembrolizumab for use within the Cancer Drugs Fund as an option for treating locally advanced or metastatic urothelial carcinoma in adults who have had platinum-containing chemotherapy, provided that pembrolizumab was stopped at 2 years of uninterrupted treatment, or earlier if the disease progresses, and the conditions of the managed access agreement for pembrolizumab are followed

    Single-arm, open label prospective trial to assess prediction of the role of ERCC1/XPF complex in the response of advanced NSCLC patients to platinum-based chemotherapy

    Get PDF
    Background: Platinum-based therapy, combined or not with immune checkpoint inhibitors, represents a front-line choice for patients with non-small-cell lung cancer (NSCLC). Despite the improved outcomes in the last years for this malignancy, only a sub-group of patients have long-term benefit. Excision repair cross-complementation group 1 (ERCC1) has been considered a potential biomarker to predict the outcome of platinum-based chemotherapy in NSCLC. However, the ERCC1 gene is transcribed in four splice variants where the isoform 202 was described as the only one active and able to complex Xeroderma pigmentosum group F-complementing protein (XPF). Here, we prospectively investigated if the active form of ERCC1, as assessed by the ERCC1/XPF complex (ERCC1/XPF), could predict the sensitivity to platinum compounds.Patients and methods: Prospectively enrolled, patients with advanced NSCLC treated with a first-line regimen containing platinum were centrally evaluated for ERCC1/XPF by a proximity ligation assay. Overall survival (OS), progression-free survival (PFS) and objective response rate (ORR) were analyzed.Results: The absence of the ERCC1/XPF in the tumor suggested a trend of worst outcomes in terms of both OS [hazard ratio (HR) 1.41, 95% confidence interval (CI) 0.67-2.94, P 0.373] and PFS (HR 1.61, 95% CI 0.88-3.03, P = 0.123). ORR was marginally influenced in ERCC1/XPF-negative and -positive groups [odds ratio (stable disease progressive disease versus complete response partial response) 0.87, 95% a 0.25-3.07, P = 0.832].Conclusion: The lack of ERCC1/XPF complex in NSCLC tumor cells might delineate a group of patients with poor outcomes when treated with platinum compounds. ERCC1/XPF absence might well identify patients for whom a different therapeutic approach could be necessary

    Gemcitabine and carboplatin in carcinoma of unknown primary site: a phase 2 Adelaide Cancer Trials and Education Collaborative study

    Get PDF
    Cancer of unknown primary site (CUP) represents up to 5% of all cancer diagnoses and is associated with poor survival. We have performed a prospective multicentre phase 2 trial to evaluate efficacy and toxicity of the combination of gemcitabine (G) and carboplatin (C) for patients with CUP. Patients with histologically confirmed metastatic carcinoma in which the primary site of cancer was not evident after prospectively designated investigation and who had ECOG performance status 0–2 were treated with G 1000 mg m−2 intravenously (i.v.) days 1 and 8, and C AUC 5 i.v. on day 8 every 3 weeks to a maximum of nine cycles. The primary end points were response rate, and toxicity, with secondary end points of progression-free survival and overall survival. Fifty-one (23 male, 27 female) patients were enrolled (one patient ineligible), with a median age of 69 years (range 41–83 years). Fifty patients were evaluable for toxicity and 46 patients were evaluable for efficacy. The overall response rate to the GC regimen was 30.5%. With a median follow-up of 24 months, the median progression-free survival was 18 weeks (4.2 months) and the median overall survival was 34 weeks (7.8 months). The frequency of grade 3 or 4 toxicity was low. Nausea/vomiting was the most common side effect, but was usually only mild in severity. Uncomplicated neutropenia (14%), thrombocytopenia (10%) and anaemia (8%) were the most common causes of grade 3–4 toxicity. The regimen was very well tolerated, particularly in the elderly. The GC regimen is an active regimen in CUP with excellent tolerability and should be considered particularly for elderly patients with CUP

    COLD-PCR enhanced melting curve analysis improves diagnostic accuracy for KRAS mutations in colorectal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>KRAS </it>mutational analysis is the standard of care prior to initiation of treatments targeting the epidermal growth factor receptor (<it>EGFR</it>) in patients with metastatic colorectal cancer. Sensitive methods are required to reliably detect <it>KRAS </it>mutations in tumor samples due to admixture with non-mutated cells. Many laboratories have implemented sensitive tests for <it>KRAS </it>mutations, but the methods often require expensive instrumentation and reagents, parallel reactions, multiple steps, or opening PCR tubes.</p> <p>Methods</p> <p>We developed a highly sensitive, single-reaction, closed-tube strategy to detect all clinically significant mutations in <it>KRAS </it>codons 12 and 13 using the Roche LightCycler<sup>® </sup>instrument. The assay detects mutations via PCR-melting curve analysis with a Cy5.5-labeled sensor probe that straddles codons 12 and 13. Incorporating a fast COLD-PCR cycling program with a critical denaturation temperature (<it>T<sub>c</sub></it>) of 81°C increased the sensitivity of the assay >10-fold for the majority of <it>KRAS </it>mutations.</p> <p>Results</p> <p>We compared the COLD-PCR enhanced melting curve method to melting curve analysis without COLD-PCR and to traditional Sanger sequencing. In a cohort of 61 formalin-fixed paraffin-embedded colorectal cancer specimens, 29/61 were classified as mutant and 28/61 as wild type across all methods. Importantly, 4/61 (6%) were re-classified from wild type to mutant by the more sensitive COLD-PCR melting curve method. These 4 samples were confirmed to harbor clinically-significant <it>KRAS </it>mutations by COLD-PCR DNA sequencing. Five independent mixing studies using mutation-discordant pairs of cell lines and patient specimens demonstrated that the COLD-PCR enhanced melting curve assay could consistently detect down to 1% mutant DNA in a wild type background.</p> <p>Conclusions</p> <p>We have developed and validated an inexpensive, rapid, and highly sensitive clinical assay for <it>KRAS </it>mutations that is the first report of COLD-PCR combined with probe-based melting curve analysis. This assay significantly improved diagnostic accuracy compared to traditional PCR and direct sequencing.</p

    EGFR related mutational status and association to clinical outcome of third-line cetuximab-irinotecan in metastatic colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As supplement to <it>KRAS </it>mutational analysis<it>, BRAF and PIK3CA </it>mutations as well as expression of PTEN may account for additional non-responders to anti-EGFR-MoAbs treatment. The aim of the present study was to investigate the utility as biomarkers of these mutations in a uniform cohort of patients with metastatic colorectal cancer treated with third-line cetuximab/irinotecan.</p> <p>Methods</p> <p>One-hundred-and-seven patients were prospectively included in the study. Mutational analyses of <it>KRAS, BRAF </it>and <it>PIK3CA </it>were performed on DNA from confirmed malignant tissue using commercially available kits. Loss of PTEN and EGFR was assessed by immunohistochemistry.</p> <p>Results</p> <p>DNA was available in 94 patients. The frequency of KRAS, <it>BRAF </it>and <it>PIK3CA </it>mutations were 44%, 3% and 14%, respectively. All were non-responders. EGF receptor status by IHC and loss of PTEN failed to show any clinical importance. <it>KRAS </it>and <it>BRAF </it>were mutually exclusive. Supplementing <it>KRAS </it>analysis with <it>BRAF </it>and <it>PIK3CA </it>indentified additional 11% of non-responders. Patient with any mutation had a high risk of early progression, whereas triple-negative status implied a response rate (RR) of 41% (p < 0.001), a disease control (DC) rate of 73% (p < 001), and a significantly higher PFS of 7.7(5.1-8.6 95%CI) versus 2.3 months (2.1-3.695%CI) (p < 0.000).</p> <p>Conclusion</p> <p>Triple-negative status implied a clear benefit from treatment, and we suggest that patient selection for third-line combination therapy with cetuximab/irinotecan could be based on triple mutational testing.</p

    Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and ultra-deep pyrosequencing

    Get PDF
    BACKGROUND: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. METHODS: We describe a high resolution melting (HRM) assay for mutation detection in EGFR exons 19-21, KRAS codon 12/13 and BRAF V600 using formalin-fixed paraffin-embedded samples. Somatic variation of KRAS exon 2 was also analysed by massively parallel pyrosequencing of amplicons with the GS Junior 454 platform. RESULTS: We tested 120 routine diagnostic specimens from patients with colorectal or lung cancer. Mutations in KRAS, BRAF and EGFR were observed in 41.9%, 13.0% and 11.1% of the overall samples, respectively, being mutually exclusive. For KRAS, six types of substitutions were detected (17 G12D, 9 G13D, 7 G12C, 2 G12A, 2 G12V, 2 G12S), while V600E accounted for all the BRAF activating mutations. Regarding EGFR, two cases showed exon 19 deletions (delE746-A750 and delE746-T751insA) and another two substitutions in exon 21 (one showed L858R with the resistance mutation T590M in exon 20, and the other had P848L mutation). Consistent with earlier reports, our results show that KRAS and BRAF mutation frequencies in colorectal cancer were 44.3% and 13.0%, respectively, while EGFR mutations were detected in 11.1% of the lung cancer specimens. Ultra-deep amplicon pyrosequencing successfully validated the HRM results and allowed detection and quantitation of KRAS somatic mutations. CONCLUSIONS: HRM is a rapid and sensitive method for moderate-throughput cost-effective screening of oncogene mutations in clinical samples. Rather than Sanger sequence validation, next-generation sequencing technology results in more accurate quantitative results in somatic variation and can be achieved at a higher throughput scale.This work was supported by grants from Spanish Health Ministry (FIS) network RIRAAF (RD 07/0064).Ye

    A phase II trial of gemcitabine plus carboplatin in advanced transitional cell carcinoma of the urothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have demonstrated the effectiveness of cisplatin-based combinations in patients with advanced transitional cell carcinoma(TCC) of the urothelium. Concern over cisplatin toxicity instigated a search for alternative regimens. The aim of the study was to evaluate the activity and tolerability of gemcitabine plus carboplatin combination as first-line treatment in patients with advanced transitional cell carcinoma of the urothelium.</p> <p>Methods</p> <p>Patients with advanced TCC were treated with gemcitabine 1200 mg/m<sup>2 </sup>on days 1 and 8 and carboplatin area under the concentration-time curve(AUC) 5 on day 1 every 21 days.</p> <p>Results</p> <p>Out of 41 patients, thirty-nine were evaluable for efficacy and 41 for toxicity. A median of 5 cycles (range 1–6) was administered. Overall response rate was 46.2% (95% confidence interval: 32–65%) including 10.3% complete responses and 35.9% partial responses. The median time to progression and median overall survival were 7.5 months (95% confidence interval: 6.6–8.4 months) and 13.6 months (95% confidence interval: 10.2–17.0 months), respectively. Grade 3/4 neutropenia, anemia and thrombocytopenia were observed in 36.6%, 26.8, and 24.4% of patients, respectively. Non-hematological toxicity was generally mild. Grade 3 vomiting occurred in 1 (2.4%) patients.</p> <p>Conclusion</p> <p>The gemcitabine plus carboplatin combination is active in advanced TCC with acceptable toxicity and needs to be evaluated further and compared with other non-cisplatin-containing regimens.</p> <p>Trial registration</p> <p>ISRCTN88259320</p

    Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles

    Get PDF
    INTRODUCTION: Triple-negative breast cancers (TNBCs) are characterised by lack of expression of hormone receptors and epidermal growth factor receptor 2 (HER-2). As they frequently express epidermal growth factor receptors (EGFRs), anti-EGFR therapies are currently assessed for this breast cancer subtype as an alternative to treatments that target HER-2 or hormone receptors. Recently, EGFR-activating mutations have been reported in TNBC specimens in an East Asian population. Because variations in the frequency of EGFR-activating mutations in East Asians and other patients with lung cancer have been described, we evaluated the EGFR mutational profile in tumour samples from European patients with TNBC. METHODS: We selected from a DNA tumour bank 229 DNA samples isolated from frozen, histologically proven and macrodissected invasive TNBC specimens from European patients. PCR and high-resolution melting (HRM) analyses were used to detect mutations in exons 19 and 21 of EGFR. The results were then confirmed by bidirectional sequencing of all samples. RESULTS: HRM analysis allowed the detection of three EGFR exon 21 mutations, but no exon 19 mutations. There was 100% concordance between the HRM and sequencing results. The three patients with EGFR exon 21 abnormal HRM profiles harboured the rare R836R SNP, but no EGFR-activating mutation was identified. CONCLUSIONS: This study highlights variations in the prevalence of EGFR mutations in TNBC. These variations have crucial implications for the design of clinical trials involving anti-EGFR treatments in TNBC and for identifying the potential target population
    corecore