324 research outputs found

    Direct Substrate Delivery into Mitochondrial-Fission Deficient Pancreatic Islets Rescues Insulin Secretion

    Get PDF
    In pancreatic beta cells, mitochondrial bioenergetics control glucose-stimulated insulin secretion (GSIS). Mitochondrial dynamics are generally associated with quality control, maintaining the functionality of bioenergetics. By acute pharmacological inhibition of mitochondrial fission protein Drp1, we here demonstrate that mitochondrial fission is necessary for GSIS in mouse and human islets. We confirm that genetic silencing of Drp1 increases mitochondrial proton leak in MIN6 cells. However, our comprehensive analysis of pancreatic islet bioenergetics reveals that Drp1 does not control insulin secretion via its effect on proton leak but instead via modulation of glucose-fuelled respiration. Notably, pyruvate fully rescues the impaired insulin secretion of fission-deficient beta cells, demonstrating that defective mitochondrial dynamics solely impact substrate supply upstream of oxidative phosphorylation. The present findings provide novel insights in how mitochondrial dysfunction may cause pancreatic beta cell failure. In addition, the results will stimulate new thinking in the intersecting fields of mitochondrial dynamics and bioenergetics, as treatment of defective dynamics in mitochondrial diseases appears to be possible by improving metabolism upstream of mitochondria

    Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes

    Get PDF
    The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes – carotid body glomus cells, and ‘pulmonary neuroendocrine cells’ (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive ‘neuroepithelial cells’ (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches

    Sfrp Controls Apicobasal Polarity and Oriented Cell Division in Developing Gut Epithelium

    Get PDF
    Epithelial tubular morphogenesis leading to alteration of organ shape has important physiological consequences. However, little is known regarding the mechanisms that govern epithelial tube morphogenesis. Here, we show that inactivation of Sfrp1 and Sfrp2 leads to reduction in fore-stomach length in mouse embryos, which is enhanced in the presence of the Sfrp5 mutation. In the mono-cell layer of fore-stomach epithelium, cell division is normally oriented along the cephalocaudal axis; in contrast, orientation diverges in the Sfrps-deficient fore-stomach. Cell growth and apoptosis are not affected in the Sfrps-deficient fore-stomach epithelium. Similarly, cell division orientation in fore-stomach epithelium diverges as a result of inactivation of either Stbm/Vangl2, an Fz/PCP component, or Wnt5a. These observations indicate that the oriented cell division, which is controlled by the Fz/PCP pathway, is one of essential components in fore-stomach morphogenesis. Additionally, the small intestine epithelium of Sfrps compound mutants fails to maintain proper apicobasal polarity; the defect was also observed in Wnt5a-inactivated small intestine. In relation to these findings, Sfrp1 physically interacts with Wnt5a and inhibits Wnt5a signaling. We propose that Sfrp regulation of Wnt5a signaling controls oriented cell division and apicobasal polarity in the epithelium of developing gut

    Global, neuronal or β cell-specific deletion of inceptor improves glucose homeostasis in male mice with diet-induced obesity

    Get PDF
    Insulin resistance is an early complication of diet-induced obesity (DIO)1, potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive beta cell hypertrophy and development of type 2 diabetes2. Insulin not only signals via the insulin receptor (INSR), but also promotes beta cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R)3-6. We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization7. But, although beta cell-specific loss of inceptor improves beta cell function in lean mice7, it warrants clarification whether inceptor signal inhibition also improves glycaemia under conditions of obesity. We assessed the glucometabolic effects of targeted inceptor deletion in either the brain or the pancreatic beta cells under conditions of DIO in male mice. In the present study, we show that global and neuronal deletion of inceptor, as well as its adult-onset deletion in the beta cells, improves glucose homeostasis by enhancing beta cell health and function. Moreover, we demonstrate that inceptor-mediated improvement in glucose control does not depend on inceptor function in agouti-related protein-expressing or pro-opiomelanocortin neurons. Our data demonstrate that inceptor inhibition improves glucose homeostasis in mice with DIO, hence corroborating that inceptor is a crucial regulator of INSR and IGF1R signalling. In male mice with diet-induced obesity, deletion of insulin inhibitory receptor (inceptor) in the whole body, in the brain and in pancreatic beta cells improves glucose homeostasis, underlining a role of inceptor in regulating glucose homeostasis in the brain and pancreas

    Transcriptional Control in Cardiac Progenitors: Tbx1 Interacts with the BAF Chromatin Remodeling Complex and Regulates Wnt5a

    Get PDF
    Mutations of the Wnt5a gene, encoding a ligand of the non-canonical Wnt pathway, and the Ror2 gene, encoding its receptor, have been found in patients with cardiac outflow tract defects. We found that Wnt5a is expressed in the second heart field (SHF), a population of cardiac progenitor cells destined to populate the cardiac outflow tract and the right ventricle. Because of cardiac phenotype similarities between Wnt5a and Tbx1 mutant mice, we tested potential interactions between the two genes. We found a strong genetic interaction in vivo and determined that the loss of both genes caused severe hypoplasia of SHF–dependent segments of the heart. We demonstrated that Wnt5a is a transcriptional target of Tbx1 and explored the mechanisms of gene regulation. Tbx1 occupies T-box binding elements within the Wnt5a gene and interacts with the Baf60a/Smarcd1 subunit of a chromatin remodeling complex. It also interacts with the Setd7 histone H3K4 monomethyltransferase. Tbx1 enhances Baf60a occupation at the Wnt5a gene and enhances its H3K4 monomethylation status. Finally, we show that Baf60a is required for Tbx1–driven regulation of target genes. These data suggest a model in which Tbx1 interacts with, and probably recruits a specific subunit of, the BAF complex as well as histone methylases to activate or enhance transcription. We speculate that this may be a general mechanism of T-box function and that Baf60a is a key component of the transcriptional control in cardiac progenitors

    Wnt-reporter expression pattern in the mouse intestine during homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The canonical Wnt signaling pathway is a known regulator of cell proliferation during development and maintenance of the intestinal epithelium. Perturbations in this pathway lead to aberrant epithelial proliferation and intestinal cancer. In the mature intestine, proliferation is confined to the relatively quiescent stem cells and the rapidly cycling transient-amplifying cells in the intestinal crypts. Although the Wnt signal is believed to regulate all proliferating intestinal cells, surprisingly, this has not been thoroughly demonstrated. This important determination has implications on intestinal function, especially during epithelial expansion and regeneration, and warrants an extensive characterization of Wnt-activated cells.</p> <p>Methods</p> <p>To identify intestinal epithelial cells that actively receive a Wnt signal, we analyzed intestinal Wnt-reporter expression patterns in two different mouse lines using immunohistochemistry, enzymatic activity, <it>in situ </it>hybridization and qRT-PCR, then corroborated results with reporter-independent analyses. Wnt-receiving cells were further characterized for co-expression of proliferation markers, putative stem cell markers and cellular differentiation markers using an immunohistochemical approach. Finally, to demonstrate that Wnt-reporter mice have utility in detecting perturbations in intestinal Wnt signaling, the reporter response to gamma-irradiation was examined.</p> <p>Results</p> <p>Wnt-activated cells were primarily restricted to the base of the small intestinal and colonic crypts, and were highest in numbers in the proximal small intestine, decreasing in frequency in a gradient toward the large intestine. Interestingly, the majority of the Wnt-reporter-expressing cells did not overlap with the transient-amplifying cell population. Further, while Wnt-activated cells expressed the putative stem cell marker Musashi-1, they did not co-express DCAMKL-1 or cell differentiation markers. Finally, gamma-irradiation stimulated an increase in Wnt-activated intestinal crypt cells.</p> <p>Conclusion</p> <p>We show, for the first time, detailed characterization of the intestine from Wnt-reporter mice. Further, our data show that the majority of Wnt-receiving cells reside in the stem cell niche of the crypt base and do not extend into the proliferative transient-amplifying cell population. We also show that the Wnt-reporter mice can be used to detect changes in intestinal epithelial Wnt signaling upon physiologic injury. Our findings have an important impact on understanding the regulation of the intestinal stem cell hierarchy during homeostasis and in disease states.</p

    Complex SUMO-1 Regulation of Cardiac Transcription Factor Nkx2-5

    Get PDF
    Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51) of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R) does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a “shifting” site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity

    Reptilian Heart Development And The Molecular Basis Of Cardiac Chamber Evolution

    Get PDF
    The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy(1-3). However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles(4-7)? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors(8,9). In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution
    corecore