52 research outputs found

    Discovery of 1,3-Diaminobenzenes as Selective Inhibitors of Platelet Activation at the PAR1 Receptor

    Get PDF
    A high-throughput screen of the NIH-MLSMR compound collection, along with a series of secondary assays to identify potential targets of hit compounds, previously identified a 1,3-diaminobenzene scaffold that targets protease-activated receptor 1 (PAR1). We now report additional structure–activity relationship (SAR) studies that delineate the requirements for activity at PAR1 and identify plasma-stable analogues with nanomolar inhibition of PAR1-mediated platelet activation. Compound 4 was declared as a probe (ML161) with the NIH Molecular Libraries Program. This compound inhibited platelet aggregation induced by a PAR1 peptide agonist or by thrombin but not by several other platelet agonists. Initial studies suggest that ML161 is an allosteric inhibitor of PAR1. These findings may be important for the discovery of antithrombotics with an improved safety profile

    Mobilization of HIV Spread by Diaphanous 2 Dependent Filopodia in Infected Dendritic Cells

    Get PDF
    Paramount to the success of persistent viral infection is the ability of viruses to navigate hostile environments en route to future targets. In response to such obstacles, many viruses have developed the ability of establishing actin rich-membrane bridges to aid in future infections. Herein through dynamic imaging of HIV infected dendritic cells, we have observed how viral high-jacking of the actin/membrane network facilitates one of the most efficient forms of HIV spread. Within infected DC, viral egress is coupled to viral filopodia formation, with more than 90% of filopodia bearing immature HIV on their tips at extensions of 10 to 20 µm. Live imaging showed HIV filopodia routinely pivoting at their base, and projecting HIV virions at µm.sec−1 along repetitive arc trajectories. HIV filopodial dynamics lead to up to 800 DC to CD4 T cell contacts per hour, with selection of T cells culminating in multiple filopodia tethering and converging to envelope the CD4 T-cell membrane with budding HIV particles. Long viral filopodial formation was dependent on the formin diaphanous 2 (Diaph2), and not a dominant Arp2/3 filopodial pathway often associated with pathogenic actin polymerization. Manipulation of HIV Nef reduced HIV transfer 25-fold by reducing viral filopodia frequency, supporting the potency of DC HIV transfer was dependent on viral filopodia abundance. Thus our observations show HIV corrupts DC to CD4 T cell interactions by physically embedding at the leading edge contacts of long DC filopodial networks

    Efficient Production of HIV-1 Virus-Like Particles from a Mammalian Expression Vector Requires the N-Terminal Capsid Domain

    Get PDF
    It is now well accepted that the structural protein Pr55Gag is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55Gag is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55Gag sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55Gag-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development

    Genetic Detection and Characterization of Lujo Virus, a New Hemorrhagic Fever–Associated Arenavirus from Southern Africa

    Get PDF
    Lujo virus (LUJV), a new member of the family Arenaviridae and the first hemorrhagic fever–associated arenavirus from the Old World discovered in three decades, was isolated in South Africa during an outbreak of human disease characterized by nosocomial transmission and an unprecedented high case fatality rate of 80% (4/5 cases). Unbiased pyrosequencing of RNA extracts from serum and tissues of outbreak victims enabled identification and detailed phylogenetic characterization within 72 hours of sample receipt. Full genome analyses of LUJV showed it to be unique and branching off the ancestral node of the Old World arenaviruses. The virus G1 glycoprotein sequence was highly diverse and almost equidistant from that of other Old World and New World arenaviruses, consistent with a potential distinctive receptor tropism. LUJV is a novel, genetically distinct, highly pathogenic arenavirus

    Evolutionary Modeling of Rate Shifts Reveals Specificity Determinants in HIV-1 Subtypes

    Get PDF
    A hallmark of the human immunodeficiency virus 1 (HIV-1) is its rapid rate of evolution within and among its various subtypes. Two complementary hypotheses are suggested to explain the sequence variability among HIV-1 subtypes. The first suggests that the functional constraints at each site remain the same across all subtypes, and the differences among subtypes are a direct reflection of random substitutions, which have occurred during the time elapsed since their divergence. The alternative hypothesis suggests that the functional constraints themselves have evolved, and thus sequence differences among subtypes in some sites reflect shifts in function. To determine the contribution of each of these two alternatives to HIV-1 subtype evolution, we have developed a novel Bayesian method for testing and detecting site-specific rate shifts. The RAte Shift EstimatoR (RASER) method determines whether or not site-specific functional shifts characterize the evolution of a protein and, if so, points to the specific sites and lineages in which these shifts have most likely occurred. Applying RASER to a dataset composed of large samples of HIV-1 sequences from different group M subtypes, we reveal rampant evolutionary shifts throughout the HIV-1 proteome. Most of these rate shifts have occurred during the divergence of the major subtypes, establishing that subtype divergence occurred together with functional diversification. We report further evidence for the emergence of a new sub-subtype, characterized by abundant rate-shifting sites. When focusing on the rate-shifting sites detected, we find that many are associated with known function relating to viral life cycle and drug resistance. Finally, we discuss mechanisms of covariation of rate-shifting sites

    Rescue of HIV-1 Release by Targeting Widely Divergent NEDD4-Type Ubiquitin Ligases and Isolated Catalytic HECT Domains to Gag

    Get PDF
    Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release

    The Nucleocapsid Region of HIV-1 Gag Cooperates with the PTAP and LYPXnL Late Domains to Recruit the Cellular Machinery Necessary for Viral Budding

    Get PDF
    HIV-1 release is mediated through two motifs in the p6 region of Gag, PTAP and LYPXnL, which recruit cellular proteins Tsg101 and Alix, respectively. The Nucleocapsid region of Gag (NC), which binds the Bro1 domain of Alix, also plays an important role in HIV-1 release, but the underlying mechanism remains unclear. Here we show that the first 202 residues of the Bro1 domain (Broi) are sufficient to bind Gag. Broi interferes with HIV-1 release in an NC–dependent manner and arrests viral budding at the plasma membrane. Similar interrupted budding structures are seen following over-expression of a fragment containing Bro1 with the adjacent V domain (Bro1-V). Although only Bro1-V contains binding determinants for CHMP4, both Broi and Bro1-V inhibited release via both the PTAP/Tsg101 and the LYPXnL/Alix pathways, suggesting that they interfere with a key step in HIV-1 release. Remarkably, we found that over-expression of Bro1 rescued the release of HIV-1 lacking both L domains. This rescue required the N-terminal region of the NC domain in Gag and the CHMP4 binding site in Bro1. Interestingly, release defects due to mutations in NC that prevented Bro1 mediated rescue of virus egress were rescued by providing a link to the ESCRT machinery via Nedd4.2s over-expression. Our data support a model in which NC cooperates with PTAP in the recruitment of cellular proteins necessary for its L domain activity and binds the Bro1–CHMP4 complex required for LYPXnL–mediated budding

    Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag?TSG101 interaction

    No full text
    The egress of HIV particles from virus-infected cells is accomplished by the recruitment of proteins that normally mediate host cell endocytic functions. This process requires interaction of the HIV Gag protein with the host protein TSG101 (tumor susceptibility gene 101). Here, we report the use of a bacterial reverse two-hybrid system to identify cyclic peptides that interfere with the Gag?TSG101 interaction and the finding that a five amino acid peptide discovered by this approach can disrupt the interaction and consequently inhibit HIV egress. The inhibiting molecule, which was selected from a cyclic peptide library containing 3.2 × 106 members, differs in primary sequence from the interacting sites of either TSG101 or Gag. Addition of cyclic peptide tagged with an HIV Tat sequence, which previously has been shown to enhance protein translocation across plasma membranes, to cultured human cells inhibited the production of virus-like particles (VLPs) by these cells (IC50 of 7 ?M), and this inhibition occurred in the absence of adverse affects on normal endocytic functions mediated by TSG101. A mutant Gag protein not dependent on TSG101 for release was unaffected by the cyclic peptide. Our findings, which suggest that interference with the TSG101?Gag interaction by cyclic peptides may be of practical use in the treatment of HIV infections, identify a specific cyclic peptide that reduces VLP release by this mechanism; they also demonstrate that the efficiency of interference with protein?protein interactions by cyclic peptides can be enhanced by tagging the peptides with translocation-promoting sequences. Collectively our results support the notion that small molecule therapeutics that inhibit specific interactions between viral and host proteins may have general applicability in antiviral therapy.<br/
    corecore