59,537 research outputs found

    Single crystal growth and physical properties of SrFe2_{2}(As1x_{1-x}Px_{x})2_{2}

    Full text link
    We report a crystal growth and physical properties of SrFe2_{2}(As1x_{1-x}Px_{x})2_{2}. The single crystals for various xxs were grown by a self flux method. For x=0.35x = 0.35, TcT_c reaches the maximum value of 30\,K and the electrical resistivity ρ\rho(TT) shows TT-linear dependence. As xx increases, TcT_{c} decreases and ρ\rho(TT) changes to T2T^2-behavior, indicating a standard Fermi liquid. These results suggest that a magnetic quantum critical point exists around x=0.35x=0.35.Comment: 4 pages, 4 figures, accepted to Supplemental issue of the Journal of Physical Society of Japan (JPSJ

    Exotic Topological States with Raman-Induced Spin-Orbit Coupling

    Full text link
    We propose a simple experimental scheme to realize simultaneously the one-dimensional spin-orbit coupling and the staggered spin-flip in ultracold pseudospin-1/21/2 atomic Fermi gases trapped in square optical lattices. In the absence of interspecies interactions, the system supports gapped Chern insulators and gapless topological semimetal states. By turning on the ss-wave interactions, a rich variety of gapped and gapless inhomogeneous topological superfluids can emerge. In particular, a gapped topological Fulde-Ferrell superfluid, in which the chiral edge states at opposite boundaries possess the same chirality, is predicted.Comment: 11 pages, 6 figure

    Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood

    Full text link
    Two distinct halo populations were found in the solar neighborhood by a series of works. They can be clearly separated by [alpha\Fe] and several other elemental abundance ratios including [Cu/Fe]. Very recently, a non-local thermodynamic equilibrium (non-LTE) study revealed that relatively large departures exist between LTE and non-LTE results in copper abundance analysis. We aim to derive the copper abundances for the stars from the sample of Nissen et al (2010) with both LTE and non-LTE calculations. Based on our results, we study the non-LTE effects of copper and investigate whether the high-alpha population can still be distinguished from the low-alpha population in the non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs. Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis method, we derive the non-LTE copper abundances based on the new atomic model with current atomic data obtained from both laboratory and theoretical calculations. The copper abundances determined from non-LTE calculations are increased by 0.01 to 0.2 dex depending on the stellar parameters compared with the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into consideration, the high- and low-alpha stars still show distinguishable copper abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus [Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor stars. Our results confirmed that there are two distinct halo populations in the solar neighborhood. The dichotomy in copper abundance is a peculiar feature of each population, suggesting that they formed in different environments and evolved obeying diverse scenarios.Comment: 9 pages, 7 figures, 2 table

    Optimal aeroassisted orbital transfer with plane change using collocation and nonlinear programming

    Get PDF
    The fuel optimal control problem arising in the non-planar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic strategy here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the aeroassisted HEO to LEO transfer consists of three phases. In the first phase, the orbital transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and bank angle modulations to perform the desired orbital plane change and to satisfy heating constraints. Because of the energy loss during the turn, an impulse is required to initiate the third phase to boost the vehicle back to the desired LEO orbital altitude. The third impulse is then used to circularize the orbit at LEO. The problem is solved by a direct optimization technique which uses piecewise polynomial representation for the state and control variables and collocation to satisfy the differential equations. This technique converts the optimal control problem into a nonlinear programming problem which is solved numerically. Solutions were obtained for cases with and without heat constraints and for cases of different orbital inclination changes. The method appears to be more powerful and robust than other optimization methods. In addition, the method can handle complex dynamical constraints
    corecore