19 research outputs found

    Effect of ochratoxin A-producing Aspergilli on stilbenic phytoalexin synthesis in grapes

    No full text
    Berries of Vitis vinifera L. cv. Barbera were infected, at veraison and during ripening, by a conidial suspension of A. japonicus, A. ochraceus, A. fumigatus and two isolates of A. carbonarius to control ochratoxin A production and stilbene induced synthesis. The experimental design provided also for intact and punctured berries and incubation temperature of 25 degrees C and 30 degrees C. All the tested fungi, except A. fumigatus, significantly increased trans-resveratrol synthesis over the control, while trans-piceid was not affected; only A. ochraceus significantly elicited the berries to synthesize piceatannol. The two isolates of A. carbonarius produced higher amounts of ochratoxin A than did the other fungi. A positive correlation between ochratoxin A and trans-resveratrol synthesis occurred. trans-Resveratrol and piceatannol showed fungicidal activity against A. carbonarius, being able to completely inhibit fungal growth at a concentration of 300 micro g/g and 20 micro g/g, respectively

    Longevity nutrients resveratrol, wines and grapes

    No full text
    A mild-to-moderate wine drinking has been linked with reduced cardiovascular, cerebrovascular, and peripheral vascular risk as well as reduced risk due to cancer. The reduced risk of cardiovascular disease associated with wine drinking is popularly known as French Paradox. A large number of reports exist in the literature indicating that resveratrol present in wine is primarily responsible for the cardioprotection associated with wine. Recently, resveratrol was shown to extend life span in yeast through the activation of longevity gene SirT1, which is also responsible for the longevity mediated by calorie restriction. This review summarizes the reports available on the functional and molecular biological aspects of resveratrol, wine and grapes in potentiating the longevity genes
    corecore