27,712 research outputs found

    Intra-day variability observations and the VLBI structure analysis of quasar S4 0917+624

    Get PDF
    The IDV observations of S4 0917+624 were carried out monthly, from August 2005 to January 2010, with the Urumqi 25m radio telescope at 4.8 GHz. The quasar S4 0917+624 exhibits only very weak or no IDV during our 4.5 year observing interval. Prior to the year 2000, the source S4 0917+624 was one of the most prominent IDV sources. Our new data indicate that the previous strong IDV has ceased. We analyzed the long-term VLBI structural variability using Gaussian model-fitting. From this we obtained the flux densities and the deconvolved sizes of core and inner-jet components of the source. We studied the properties such as core fraction, angular size, spectral index, and brightness temperature of VLBI core for S4 0917+624, as well as the time delay between 5 and 15 GHz variations, and compared them with the IDV properties of S4 0917+624. The source shows ejection of several jet components that are suspected to have partially reduced the IDV amplitude of S4 0917+624. However, during 2005-2006, the VLBI core size was comparable to the size before the year 2000, but no strong IDV was detected in the period, suggesting that the quenching effect due to source size changes may not be responsible for the lack of strong IDV after the year 2000. The refractive scattering properties for the strong IDV phase of S4 0917+624 before the year 2000 are discussed. The disappearance of strong IDV in S4 0917+624 after the year 2000 is a mystery and cannot be explained via the quenching effect by changes in the observable VLBI structure. However, it may be caused by changes in the interstellar medium, i.e. by interstellar weather, which induces changes in the scintillation pattern on timescales of several years. Further coordinated multi-frequency observations will be required to distinguish between the effect of source-intrinsic variability and changing properties of the interstellar medium.Comment: 8 pages, 6 figures, accepted for publication in A&

    Simple Metals at High Pressure

    Full text link
    In this lecture we review high-pressure phase transition sequences exhibited by simple elements, looking at the examples of the main group I, II, IV, V, and VI elements. General trends are established by analyzing the changes in coordination number on compression. Experimentally found phase transitions and crystal structures are discussed with a brief description of the present theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice course on High-Pressure Crystallography in June 2009, Sicily, Ital

    Structural Characterization of Rapid Thermal Oxidized Si\u3csub\u3e1−x−y\u3c/sub\u3eGe\u3csub\u3ex\u3c/sub\u3eC\u3csub\u3ey\u3c/sub\u3e Alloy Films Grown by Rapid Thermal Chemical Vapor Deposition

    Get PDF
    The structural properties of as-grown and rapid thermal oxidized Si1−x−yGexCy epitaxial layers have been examined using a combination of infrared, x-ray photoelectron, x-ray diffraction, secondary ion mass spectroscopy, and Raman spectroscopy techniques. Carbon incorporation into the Si1−x−yGexCy system can lead to compressive or tensile strain in the film. The structural properties of the oxidized Si1−x−yGexCy film depend on the type of strain (i.e., carbon concentration) of the as-prepared film. For compressive or fully compensated films, the oxidation process drastically reduces the carbon content so that the oxidized films closely resemble to Si1−xGex films. For tensile films, two broad regions, one with carbon content higher and the other lower than that required for full strain compensation, coexist in the oxidized films

    Binary Reactive Adsorbate on a Random Catalytic Substrate

    Full text link
    We study the equilibrium properties of a model for a binary mixture of catalytically-reactive monomers adsorbed on a two-dimensional substrate decorated by randomly placed catalytic bonds. The interacting AA and BB monomer species undergo continuous exchanges with particle reservoirs and react (A+B→∅A + B \to \emptyset) as soon as a pair of unlike particles appears on sites connected by a catalytic bond. For the case of annealed disorder in the placement of the catalytic bonds this model can be mapped onto a classical spin model with spin values S=−1,0,+1S = -1,0,+1, with effective couplings dependent on the temperature and on the mean density qq of catalytic bonds. This allows us to exploit the mean-field theory developed for the latter to determine the phase diagram as a function of qq in the (symmetric) case in which the chemical potentials of the particle reservoirs, as well as the A−AA-A and B−BB-B interactions are equal.Comment: 12 pages, 4 figure

    Dissipationless Anomalous Hall Current in Fe100−x(SiO2)xFe_{100-x}(SiO_2)_x Films

    Full text link
    The observation of dissipationless anomalous Hall current is one of the experimental evidences to confirm the intrinsic origin of anomalous Hall effect. To study the origin of anomalous Hall effect in iron, Fe100−x_{100-x}(SiO2_{2})x_{x} granular films with volume fraction of SiO2_{2} 0\le x \le 40.51 were fabricated using co-sputtering. Hall and longitudinal resistivities were measured in the temperature range 5 to 350 K with magnetic fields up to 5 Tesla. As x increased from 0 to 40.51, the anomalous Hall resistivity and longitudinal resistivity increased about 4 and 3 orders in magnitude, respectively. Analysis of the results revealed that the normalized anomalous Hall conductivity is a constant for all the samples, the evidence of dissipationless anomalous Hall current in Fe.Comment: 17 pages, 5 figures; http://link.aps.org/doi/10.1103/PhysRevB.83.20531

    A Microcalorimetric Method for Studying the Biological Effects of Mg2+ Ion on Recombinant Escherichia coli

    Get PDF
    Power-time curves of growing recombinant Escherichia coli B1 cell suspensions, treated with different concentrations of Mg2+, were recorded by microcalorimeter. The extent of the stimulatory effect of Mg2+ on the growth of recombinant E. coli B1 was compared by reference to the changes in the values of the growth rate coefficient of bacteria (k), the time of reaching the maximum effect in the log phase (tD), the time of maintaining the maximum effect in the stationary period (tS), and the maximum thermal power during the entire bacterial growth (Pm) at different Mg2+ doses and the optimal Mg2+ dose was calculated. The experimental results revealed that when Mg2+ mass concentration reached γ = 2.2 mg mL-1, the stimulatory effect is the greatest. With more Mg2+ (γ > 2.2 mg mL-1) added, the promotive effect would decrease drastically

    Blocking binding of Bacillus thuringiensis Cry1Aa to Bombyx mori cadherin receptor results in only a minor reduction of toxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bacillus thuringiensis </it>Cry1Aa insecticidal protein is the most active known <it>B. thuringiensis </it>toxin against the forest insect pest <it>Lymantria dispar </it>(gypsy moth), unfortunately it is also highly toxic against the non-target insect <it>Bombyx mori </it>(silk worm).</p> <p>Results</p> <p>Surface exposed hydrophobic residues over domains II and III were targeted for site-directed mutagenesis. Substitution of a phenylalanine residue (F328) by alanine reduced binding to the <it>Bombyx mori </it>cadherin by 23-fold, reduced biological activity against <it>B. mori </it>by 4-fold, while retaining activity against <it>Lymantria dispar</it>.</p> <p>Conclusion</p> <p>The results identify a novel receptor-binding epitope and demonstrate that virtual elimination of binding to cadherin BR-175 does not completely remove toxicity in the case of <it>B. mori</it>.</p

    Attosecond control of electrons emitted from a nanoscale metal tip

    Full text link
    Attosecond science is based on steering of electrons with the electric field of well-controlled femtosecond laser pulses. It has led to, for example, the generation of XUV light pulses with a duration in the sub-100-attosecond regime, to the measurement of intra-molecular dynamics by diffraction of an electron taken from the molecule under scrutiny, and to novel ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Although predicted to occur, a strong light-phase sensitivity of electrons liberated by few-cycle laser pulses from solids has hitherto been elusive. Here we show a carrier-envelope (C-E) phase-dependent current modulation of up to 100% recorded in spectra of electrons laser-emitted from a nanometric tungsten tip. Controlled by the C-E phase, electrons originate from either one or two sub-500as long instances within the 6-fs laser pulse, leading to the presence or absence of spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Due to field enhancement at the tip, a simple laser oscillator suffices to reach the required peak electric field strengths, allowing attosecond science experiments to be performed at the 100-Megahertz repetition rate level and rendering complex amplified laser systems dispensable. Practically, this work represents a simple, exquisitely sensitive C-E phase sensor device, which can be shrunk in volume down to ~ 1cm3. The results indicate that the above-mentioned novel attosecond science techniques developed with and for atoms and molecules can also be employed with solids. In particular, we foresee sub-femtosecond (sub-) nanometre probing of (collective) electron dynamics, such as plasmon polaritons, in solid-state systems ranging in size from mesoscopic solids via clusters to single protruding atoms.Comment: Final manuscript version submitted to Natur

    Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases

    Full text link
    Spin-orbit coupling in semiconductors relates the spin of an electron to its momentum and provides a pathway for electrically initializing and manipulating electron spins for applications in spintronics and spin-based quantum information processing. This coupling can be regulated with quantum confinement in semiconductor heterostructures through band structure engineering. Here we investigate the spin Hall effect and current-induced spin polarization in a two-dimensional electron gas confined in (110) AlGaAs quantum wells using Kerr rotation microscopy. In contrast to previous measurements, the spin Hall profile exhibits complex structure, and the current-induced spin polarization is out-of-plane. The experiments map the strong dependence of the current-induced spin polarization to the crystal axis along which the electric field is applied, reflecting the anisotropy of the spin-orbit interaction. These results reveal opportunities for tuning a spin source using quantum confinement and device engineering in non-magnetic materials.Comment: Accepted for publication (2005

    A New Method of Probing the Phonon Mechanism in Superconductors including MgB2_{2}

    Get PDF
    Weak localization has a strong influence on both the normal and superconducting properties of metals. In particular, since weak localization leads to the decoupling of electrons and phonons, the temperature dependence of resistance (i.e., λtr\lambda_{tr}) is decreasing with increasing disorder, as manifested by Mooij's empirical rule. In addition, Testardi's universal correlation of TcT_{c} (i.e., λ\lambda) and the resistance ratio (i.e., λtr\lambda_{tr}) follows. This understanding provides a new means to probe the phonon mechanism in superconductors including MgB2_{2}. The merits of this method are its applicability to any superconductors and its reliability because the McMillan's electron-phonon coupling constant λ\lambda and λtr\lambda_{tr} change in a broad range, from finite values to zero, due to weak localization. Karkin et al's preliminary data of irradiated MgB2_{2} show the Testardi correlation, indicating that the dominant pairing mechanism in MgB2_{2} is the phonon-mediated interaction.Comment: 9 pages, latex, 3 figure
    • …
    corecore