11,164 research outputs found

    Dynamical phase transition in vibrational surface modes

    Full text link
    We consider the dynamical properties of a simple model of vibrational surface modes. We obtain the exact spectrum of surface excitations and discuss their dynamical features. In addition to the usually discussed localized and oscillatory regimes we also find a second phase transition where surface mode frequency becomes purely imaginary and describes an overdamped regime. Noticeably, this transition has an exact correspondence to the oscillatory - overdamped transition of the standard oscillator with a frictional force proportional to velocity.Comment: 4 pages, 3 figures. To appear in Braz. J. Phy

    Exact time-reversal focusing of acoustic and quantum excitations in open cavities: The perfect inverse filter

    Full text link
    The time-reversal mirror (TRM) prescribes the reverse playback of a signal to focalize an acoustic excitation as a Loschmidt echo. In the quantum domain, the perfect inverse filter (PIF) processes this signal to ensure an exact reversion provided that the excitation originated outside the cavity delimited by the transducers. We show that PIF takes a simple form when the initial excitation is created inside this cavity. This also applies to the acoustical case, where it corrects the TRM and improves the design of an acoustic bazooka. We solve an open chaotic cavity modeling a quantum bazooka and a simple model for a Helmholtz resonator, showing that the PIF becomes decisive to compensate the group velocities involved in a highly localized excitation and to achieve subwavelength resolution.Comment: 6 pages, 2 figure

    Enhancing single-parameter quantum charge pumping in carbon-based devices

    Full text link
    We present a theoretical study of quantum charge pumping with a single ac gate applied to graphene nanoribbons and carbon nanotubes operating with low resistance contacts. By combining Floquet theory with Green's function formalism, we show that the pumped current can be tuned and enhanced by up to two orders of magnitude by an appropriate choice of device length, gate voltage intensity and driving frequency and amplitude. These results offer a promising alternative for enhancing the pumped currents in these carbon-based devices.Comment: 3.5 pages, 2 figure

    Tuning laser-induced bandgaps in graphene

    Get PDF
    Could a laser field lead to the much sought-after tunable bandgaps in graphene? By using Floquet theory combined with Green's functions techniques, we predict that a laser field in the mid-infrared range can produce observable bandgaps in the electronic structure of graphene. Furthermore, we show how they can be tuned by using the laser polarization. Our results could serve as a guidance to design opto-electronic nano-devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Towards a time-reversal mirror for quantum systems

    Full text link
    The reversion of the time evolution of a quantum state can be achieved by changing the sign of the Hamiltonian as in the polarization echo experiment in NMR. In this work we describe an alternative mechanism inspired by the acoustic time reversal mirror. By solving the inverse time problem in a discrete space we develop a new procedure, the perfect inverse filter. It achieves the exact time reversion in a given region by reinjecting a prescribed wave function at its periphery.Comment: 6 pages, 4 figures. Introduction modified, references added, one figure added to improve the discussio

    Niobium Silicon alloys for Kinetic Inductance Detectors

    Full text link
    We are studying the properties of Niobium Silicon amorphous alloys as a candidate material for the fabrication of highly sensitive Kinetic Inductance Detectors (KID), optimized for very low optical loads. As in the case of other composite materials, the NbSi properties can be changed by varying the relative amounts of its components. Using a NbSi film with T_c around 1 K we have been able to obtain the first NbSi resonators, observe an optical response and acquire a spectrum in the band 50 to 300 GHz. The data taken show that this material has very high kinetic inductance and normal state surface resistivity. These properties are ideal for the development of KID. More measurements are planned to further characterize the NbSi alloy and fully investigate its potential.Comment: Accepted for publication on Journal of Low Temperature Physics. Proceedings of the LTD15 conference (Caltech 2013

    Development of Lumped Element Kinetic Inductance Detectors for NIKA

    Get PDF
    Lumped-element kinetic inductance detectors(LEKIDs) have recently shown considerable promise as direct absorption mm-wavelength detectors for astronomical applications. One major research thrust within the N\'eel Iram Kids Array (NIKA) collaboration has been to investigate the suitability of these detectors for deployment at the 30-meter IRAM telescope located on Pico Veleta in Spain. Compared to microwave kinetic inductance detectors (MKID), using quarter wavelength resonators, the resonant circuit of a LEKID consists of a discrete inductance and capacitance coupled to a feedline. A high and constant current density distribution in the inductive part of these resonators makes them very sensitive. Due to only one metal layer on a silicon substrate, the fabrication is relatively easy. In order to optimize the LEKIDs for this application, we have recently probed a wide variety of individual resonator and array parameters through simulation and physical testing. This included determining the optimal feed-line coupling, pixel geometry, resonator distribution within an array (in order to minimize pixel cross-talk), and resonator frequency spacing. Based on these results, a 144-pixel Aluminum array was fabricated and tested in a dilution fridge with optical access, yielding an average optical NEP of ~2E-16 W/Hz^1/2 (best pixels showed NEP = 6E-17 W/Hz^1/2 under 4-8 pW loading per pixel). In October 2010 the second prototype of LEKIDs has been tested at the IRAM 30 m telescope. A new LEKID geometry for 2 polarizations will be presented. Also first optical measurements of a titanium nitride array will be discussed.Comment: 5 pages, 12 figures; ISSTT 2011 Worksho

    Occupational choice, number of entrepreneurs and output: theory and empirical evidence with Spanish data

    Get PDF
    This paper extends the (Lucas, Bell J Econ 9:508–523,1978) model of occupational choices by individuals with different skills, beyond the simple options of self-employment or wage-employment, by including a second choice for the self-employed. That is, an option to hire employees and so become self-employed with employees (SEWEs), or to be self-employed without employees (SEWNEs). We solve for the market equilibrium and examine the sensitivity of relative sizes of occupational groups, and of the level of productivity, to changes in the exogenous parameters. The results show that the positive (negative) association between number of SEWEs (SEWNEs) and productivity, observed in the Spanish data, can be explained, under certain conditions, as the result of cross-region and time differences in average skills. These findings point to the importance of distinguishing between SEWEs and SEWNEs in drawing valid conclusions concerning any link between entrepreneurship and economic development
    • …
    corecore