1,070 research outputs found

    Non-Fourier heat transport in metal-dielectric core-shell nanoparticles under ultrafast laser pulse excitation

    Full text link
    Relaxation dynamics of embedded metal nanoparticles after ultrafast laser pulse excitation is driven by thermal phenomena of different origins the accurate description of which is crucial for interpreting experimental results: hot electron gas generation, electron-phonon coupling, heat transfer to the particle environment and heat propagation in the latter. Regardingthis last mechanism, it is well known that heat transport in nanoscale structures and/or at ultrashort timescales may deviate from the predictions of the Fourier law. In these cases heat transport may rather be described by the Boltzmann transport equation. We present a numerical model allowing us to determine the electron and lattice temperature dynamics in a spherical gold nanoparticle core under subpicosecond pulsed excitation, as well as that of the surrounding shell dielectric medium. For this, we have used the electron-phonon coupling equation in the particle with a source term linked with the laser pulse absorption, and the ballistic-diffusive equations for heat conduction in the host medium. Either thermalizing or adiabatic boundary conditions have been considered at the shell external surface. Our results show that the heat transfer rate from the particle to the matrix can be significantly smaller than the prediction of Fourier's law. Consequently, the particle temperature rise is larger and its cooling dynamics might be slower than that obtained by using Fourier's law. This difference is attributed to the nonlocal and nonequilibrium heat conduction in the vicinity of the core nanoparticle. These results are expected to be of great importance for analyzing pump-probe experiments performed on single nanoparticles or nanocomposite media

    Transport and optical response of molecular junctions driven by surface plasmon-polaritons

    Full text link
    We consider a biased molecular junction subjected to external time-dependent electromagnetic field. The field for two typical junction geometries (bowtie antennas and metal nanospheres) is calculated within finite-difference time-domain technique. Time-dependent transport and optical response of the junctions is calculated within non-equilibrium Green's function approach expressed in a form convenient for description of multi-level systems. We present numerical results for a two-level (HOMO-LUMO) model, and discuss influence of localized surface plasmon polariton modes on transport.Comment: 9 pages, 6 figure

    Light propagation in nanorod arrays

    Get PDF
    We study propagation of TM- and TE-polarized light in two-dimensional arrays of silver nanorods of various diameters in a gelatin background. We calculate the transmittance, reflectance and absorption of arranged and disordered nanorod arrays and compare the exact numerical results with the predictions of the Maxwell-Garnett effective-medium theory. We show that interactions between nanorods, multipole contributions and formations of photonic gaps affect strongly the transmittance spectra that cannot be accounted for in terms of the conventional effective-medium theory. We also demonstrate and explain the degradation of the transmittance in arrays with randomly located rods as well as weak influence of their fluctuating diameter. For TM modes we outline the importance of skin-effect, which causes the full reflection of the incoming light. We then illustrate the possibility of using periodic arrays of nanorods as high-quality polarizers.Comment: 6 pages, 7 figure

    Photoemission Electron Microscopy as a tool for the investigation of optical near fields

    Full text link
    Photoemission electron microscopy was used to image the electrons photoemitted from specially tailored Ag nanoparticles deposited on a Si substrate (with its native oxide SiOx_{x}). Photoemission was induced by illumination with a Hg UV-lamp (photon energy cutoff ωUV=5.0\hbar\omega_{UV}=5.0 eV, wavelength λUV=250\lambda_{UV}=250 nm) and with a Ti:Sapphire femtosecond laser (ωl=3.1\hbar\omega_{l}=3.1 eV, λl=400\lambda_{l}=400 nm, pulse width below 200 fs), respectively. While homogeneous photoelectron emission from the metal is observed upon illumination at energies above the silver plasmon frequency, at lower photon energies the emission is localized at tips of the structure. This is interpreted as a signature of the local electrical field therefore providing a tool to map the optical near field with the resolution of emission electron microscopy.Comment: 10 pages, 4 figures; submitted to Physical Review Letter

    Structural, Vibrational and Thermodynamic Properties of AgnCu34-n Nanoparticles

    Full text link
    We report results of a systematic study of structural, vibrational and thermodynamical properties of 34-atom bimetallic nanoparticles from the AgnCu34-n family using model interaction potentials as derived from the embedded atom method and in the harmonic approximation of lattice dynamics. Systematic trends in the bond length and dynamical properties can be explained largely on arguments based on local coordination and elemental environment. Thus increase in the number of silver atoms in a given neighborhood introduces a monotonic increase in bond length while increase of the copper content does the reverse. Moreover, based on bond lengths of the lowest coordinated (6 and 8) copper atoms with their nearest neighbors (Cu atoms), we find that the nanoparticles divide into two groups with average bond length either close to (~ 2.58 A) or smaller (~ 2.48 A) than that in bulk copper, accompanied by characteristic features in their vibrational density of states. For the entire set of nanoparticles, vibrational modes are found above the bulk bands of copper/silver. Furthermore, a blue shift in the high frequency end with increasing number of copper atoms in the nanoparticles is traced to a shrinkage of bond lengths from bulk values. The vibrational densities of states at the low frequency end of the spectrum scale linearly with frequency as for single element nanoparticles, however, the effect is more pronounced for these nanoalloys. The Debye temperature was found to be about one third of that of the bulk for pure copper and silver nanoparticles with a non-linear increase with increasing number of copper atoms in the nanoalloys.Comment: 37 pages, 12 figure

    Dynamics of metal clusters in rare gas clusters

    Full text link
    We investigate the dynamics of Na clusters embedded in Ar matrices. We use a hierarchical approach, accounting microscopically for the cluster's degrees of freedom and more coarsely for the matrix. The dynamical polarizability of the Ar atoms and the strong Pauli-repulsion exerted by the Ar-electrons are taken into account. We discuss the impact of the matrix on the cluster gross properties and on its optical response. We then consider a realistic case of irradiation by a moderately intense laser and discuss the impact of the matrix on the hindrance of the explosion, as well as a possible pump probe scenario for analyzing dynamical responses.Comment: Proceedings of the 30th International Workshop on Condensed Matter Theories, Dresden, June 05 - 10, 2006, World Scientific. 3 figure

    Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals

    Full text link
    We introduce a new, highly sensitive, and simple heterodyne optical method for imaging individual nonfluorescent nanoclusters and nanocrystals. A 2 order of magnitude improvement of the signal is achieved compared to previous methods. This allows for the unprecedented detection of individual small absorptive objects such as metallic clusters (of 67 atoms) or nonluminescent semiconductor nanocrystals. The measured signals are in agreement with a calculation based on the scattering field theory from a photothermal-induced modulated index of refraction profile around the nanoparticle

    Measuring the quantum efficiency of single radiating dipoles using a scanning mirror

    Full text link
    Using scanning probe techniques, we show the controlled manipulation of the radiation from single dipoles. In one experiment we study the modification of the fluorescence lifetime of a single molecular dipole in front of a movable silver mirror. A second experiment demonstrates the changing plasmon spectrum of a gold nanoparticle in front of a dielectric mirror. Comparison of our data with theoretical models allows determination of the quantum efficiency of each radiating dipole.Comment: 4 pages, 4 figure

    Time resolved fission in metal clusters

    Full text link
    We explore from a theoretical point of view pump and probe (P&P) analysis for fission of metal clusters where probe pulses are generalized to allow for scanning various frequencies. We show that it is possible to measure the time the system needs to develop to scission. This is achieved by a proper choice of both delay and frequency of the probe pulse. A more detailed analysis even allows to access the various intermediate stages of the fission process.Comment: 4 pages, 4 figure
    corecore