2,013 research outputs found

    Practicing for Mars: The International Space Station (ISS) as a Testbed

    Get PDF
    Allows demonstration and development of exploration capabilities to help accomplish future missions sooner with less risk to crew and mission Characteristics of ISS as a testbed High fidelity human operations platform in LEO: Continuously operating habitat and active laboratory. High fidelity systems. Astronauts as test subjects. Highly experienced ground operations teams. Offers a controlled test environment.: Consequences to systems performance and decision making not offered in ground analogs International participation. Continuously improving system looking for new technology and ideas to improve operations. Technology Demos & Critical Systems Maturation. Human Health and Performance. Operations Simulations and Techniques. Exploration prep testing on ISS has been ongoing since 2012. Number of tests increasing with each ISS expedition. One Year Crew Expedition starting in Spring 2015. ROSCOSMOS and NASA are partnering on the Participating Crew are Mikhail Kornienko and Scott Kelly Majority of testing is an extension of current Human Biomedical Research investigations Plan for extending & expanding upon current operations techniques and tech demo studies ESA 10 Day Mission in Fall 2015 ESA astronaut focus on testing exploration technologies Many more opportunities throughout the life of ISS! 4/24/2014 [email protected] 4 Exploration testin

    The initial temporal evolution of a feedback dynamo for Mercury

    Full text link
    Various possibilities are currently under discussion to explain the observed weakness of the intrinsic magnetic field of planet Mercury. One of the possible dynamo scenarios is a dynamo with feedback from the magnetosphere. Due to its weak magnetic field Mercury exhibits a small magnetosphere whose subsolar magnetopause distance is only about 1.7 Hermean radii. We consider the magnetic field due to magnetopause currents in the dynamo region. Since the external field of magnetospheric origin is antiparallel to the dipole component of the dynamo field, a negative feedback results. For an alpha-omega-dynamo two stationary solutions of such a feedback dynamo emerge, one with a weak and the other with a strong magnetic field. The question, however, is how these solutions can be realized. To address this problem, we discuss various scenarios for a simple dynamo model and the conditions under which a steady weak magnetic field can be reached. We find that the feedback mechanism quenches the overall field to a low value of about 100 to 150 nT if the dynamo is not driven too strongly

    Simultaneous effects on parvalbumin-positive interneuron and dopaminergic system development in a transgenic rat model for sporadic schizophrenia

    Get PDF
    To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum. Parvalbumin-positive interneuron occurrence in the somatosensory cortex was shifted from layers II/III to V/VI, and the number of calbindin-positive interneurons was slightly decreased. Reduced corpus callosum thickness confirmed trend-level observations from in vivo MRI and voxel-wise tensor based morphometry. These neuroanatomical changes help explain functional phenotypes of this animal model, some of which resemble changes observed in human schizophrenia post mortem brain tissues. Our findings also demonstrate how a single molecular factor, DISC1 overexpression or misassembly, can account for a variety of seemingly unrelated morphological phenotypes and thus provides a possible unifying explanation for similar findings observed in sporadic schizophrenia patients. Our anatomical investigation of a defined model for sporadic mental illness enables a clearer definition of neuroanatomical changes associated with subsets of human sporadic schizophrenia

    Comparison of Birkeland current observations during two magnetic cloud events with MHD simulations

    Get PDF
    Low altitude field-aligned current densities ob- tained from global magnetospheric simulations are compared with two-dimensional distributions of Birkeland currents at the topside ionosphere derived from magnetic field observa- tions by the constellation of Iridium satellites. We present the analysis of two magnetic cloud events, 17–19 August 2003 and 19–21 March 2001, where the interplanetary magnetic field (IMF) rotates slowly (∼10◦/h) to avoid time-aliasing in the magnetic perturbations used to calculate the Birkeland currents. In the August 2003 event the IMF rotates from southward to northward while maintaining a negative IMF By during much of the interval. During the March 2001 event the IMF direction varies from dawnward to southward to duskward. We find that the distributions of the Birkeland current densities in the simulations agree qualitatively with the observations for northward IMF. For southward IMF, the dayside Region-1 currents are reproduced in the simu- ◦ the ionospheric grids in the simulations and the observations is shown to have only secondary effect on the magnitudes of the Birkeland currents. The electric potentials in the simu- lation for southward IMF periods are twice as large as those obtained from measurements of the plasma drift velocities by DMSP, implying that the reconnection rates in the simulation are too large. Keywords. Ionosphere (Electric fields and currents; Ionosphere-magnetosphere interactions; Modeling and forecasting) 1 Introduction Global magnetohydrodynamic (MHD) models are the most comprehensive numerical tool for studying the coupling of energy and momentum of the solar wind into the Earth’s magnetosphere and ionosphere. A particular advantage of global MHD simulations is the ability to provide continu- ous temporal and spatial coverage of key physical parame- ters over the entire simulation volume. For this reason, MHD simulations have become one of the principal tools for study- ing space weather events such as the interaction of the Earth’s magnetosphere with coronal mass ejections (CMEs) (Ridley et al., 2002) as well as magnetic storms (Slinker et al., 1998; Goodrich et al., 1998) and substorms (Lyon et al., 1998; Lopez et al., 1998; Wiltberger et al., 2000). Since the simula- tion results are frequently used to interpret physical processes in the magnetosphere–ionosphere system, assessing their ac- curacy by comparison with observations is an important task. A number of such studies have been carried out in the past us- ing space-based (Frank et al., 1995; Raeder et al., 1997) and ground-based observations (Ridley et al., 2001), or a com- bination thereof (Fedder et al., 1998; Slinker et al., 1999). However, interpreting the discrepancies between model and observations is not straightforward because the observational lation, but appear on average 5 served location, while the nightside Region-1 currents and the Region-2 currents are largely under-represented. Com- parison of the observed and simulated Birkeland current dis- tributions, which are intimately related to the plasma drifts at the ionosphere, shows that the ionospheric convection pat- tern in the MHD model and its dependence on the IMF ori- entation is essentially correct. The Birkeland total currents in the simulations are about a factor of 2 larger than observed during southward IMF. For Bz\u3e0 the disparity in the total current is reduced and the simulations for purely northward IMF agree with the observations to within 10%. The dispar- ities in the magnitudes of the Birkeland currents between the observations and the simulation results are a combined effect of the simulation overestimating the ionospheric electric field and of the Iridium fits underestimating the magnetic pertur- bations

    Active current sheets and hot flow anomalies in Mercury's bow shock

    Full text link
    Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report first observations of HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit unambiguous magnetic and particle signatures of HFAs similar to those observed earlier at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flow of supersonic solar wind plasma but also provides conditions for local particle acceleration and heating as predicted by previous numerical simulations. Together with earlier observations of HFA activity at Earth, Venus and Saturn, our results confirm that hot flow anomalies are a common property of planetary bow shocks, and show that the characteristic size of these events is of the order of one planetary radius.Comment: 39 pages, 15 figures, 2 table

    A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method:PM6-D3H+

    Get PDF
    We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth. Overall, the interaction energy of PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with RMSD and MAD values within 0.02 kcal/mol of one another. The main difference is that the geometry optimizations of 88 complexes result in 82, 6, 0, and 0 geometries with 0, 1, 2, and 3 or more imaginary frequencies using PM6-D3H+ implemented in GAMESS, while the corresponding numbers for PM6-DH+ implemented in MOPAC are 54, 17, 15, and 2. The PM6-D3H+ method as implemented in GAMESS offers an attractive alternative to PM6-DH+ in MOPAC in cases where the LBFGS optimizer must be used and a vibrational analysis is needed, e.g., when computing vibrational free energies. While the GAMESS implementation is up to 10 times slower for geometry optimizations of proteins in bulk solvent, compared to MOPAC, it is sufficiently fast to make geometry optimizations of small proteins practically feasible

    Seasonal and diurnal variations in AMPERE observations of the Birkeland currents compared to modeled results

    No full text
    We reduce measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) to give the total Birkeland (field-aligned) current flowing in both hemispheres in monthly and hourly bins. We analyze these totals using 6 years of data (2010–2015) to examine solar zenith angle-driven variations in the total Birkeland current flowing in both hemispheres, simultaneously, for the first time. A diurnal variation is identified in the total Birkeland current flowing, consistent with variations in the solar zenith angle. A seasonal variation is also identified, with more current flowing in the Northern (Southern) Hemisphere during Bartels rotations in northern (southern) summer. For months close to equinox, more current is found to flow in the Northern Hemisphere, contrary to our expectations. We also conduct the first test of the Milan (2013) model for estimating Birkeland current magnitudes, with modifications made to account for solar contributions to ionospheric conductance based on the observed variation of the Birkeland currents with season and time of day. The modified model, using the value of ?D averaged by Bartels rotation (scaled by 1.7), is found to agree with the observed AMPERE currents, with a correlation of 0.87 in the Northern Hemisphere and 0.86 in the Southern Hemisphere. The improvement over the correlation with dayside reconnection rate is demonstrated to be a significant improvement to the model. The correlation of the residuals is found to be consistent with more current flowing in the Northern Hemisphere. This new observation of systematically larger current flowing in the Northern Hemisphere is discussed in the context of previous results which suggest that the Northern Hemisphere may react more strongly to dayside reconnection than the Southern Hemisphere

    The composition of heavy molecular ions inside the ionopause of Comet Halley

    Get PDF
    The RPA2-PICCA instrument aboard the Giotto spacecraft obtained 10-210 amu mass spectral of cold thermal molecular ions in the coma of Comet Halley. The dissociation products of the long chain formaldehyde polymer polyoxymethylene (POM) have recently been proposed as the dominant complex molecules in the coma of Comet Halley; however, POM alone cannot account for all of the features of the high resolution spectrum. An important component of the dust at Comet Halley is particles highly enriched in carbon, hydrogen, oxygen, and nitrogen relative to the composition of carbonaceous chondrites. Since this dust could be a source for the heavy molecules observed by PICCA, a search was conducted for other chemical species by determining all the molecules with mass between 20 and 120 amu which can be made from the relatively abundant C, H, O, and N, without regard to chemical structure
    • …
    corecore