1,282 research outputs found

    The Carnot Cycle for Small Systems: Irreversibility and the Cost of Operations

    Full text link
    We employ the recently developed framework of the energetics of stochastic processes (called `stochastic energetics'), to re-analyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit. We find that both processes of connection to and disconnection from heat baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irreversibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy conversion over many cycles and the irreversible property of isolated, purely mechanical processes under external `macroscopic' operations are discussed in relation to the impossibility of a perpetual machine, or Maxwell's demon.Comment: 11 pages with 3 figures. Resubmitted to Physical Review E. Many paragraphs have been modifie

    Albedos of Main-Belt Comets 133P/Elst-Pizarro and 176P/LINEAR

    Get PDF
    We present the determination of the geometric R-band albedos of two main-belt comet nuclei based on data from the Spitzer Space Telescope and a number of ground-based optical facilities. For 133P/Elst-Pizarro, we find an albedo of p_R=0.05+/-0.02 and an effective radius of r_e=1.9+/-0.3 km (estimated semi-axes of a~2.3 km and b~1.6 km). For 176P/LINEAR, we find an albedo of p_R=0.06+/-0.02 and an effective radius of r_e=2.0+/-0.2 km (estimated semi-axes of a~2.6 km and b~1.5 km). In terms of albedo, 133P and 176P are similar to each other and are typical of other Themis family asteroids, C-class asteroids, and other comet nuclei. We find no indication that 133P and 176P are compositionally unique among other dynamically-similar (but inactive) members of the Themis family, in agreement with previous assertions that the two objects most likely formed in-situ. We also note that low albedo (p_R<0.075) remains a consistent feature of all cometary (i.e., icy) bodies, whether they originate in the inner solar system (the main-belt comets) or in the outer solar system (all other comets).Comment: 11 pages, 3 figures, accepted for publication in ApJ

    Apollo asteroids (1566) Icarus and 2007 MK6: Icarus family members?

    Full text link
    Although it is more complicated to search for near-Earth object (NEO) families than main belt asteroid (MBA) families, since differential orbital evolution within a NEO family can cause current orbital elements to drastically differ from each other, we have found that Apollo asteroids (1566) Icarus and the newly discovered 2007 MK6 are almost certainly related. Specifically, their orbital evolutions show a similar profile, time shifted by only ~1000 yr, based on our time-lag theory. The dynamical relationship between Icarus and 2007 MK6 along with a possible dust band, the Taurid-Perseid meteor swarm, implies the first detection of an asteroidal NEO family, namely the "Icarus asteroid family".Comment: 11 pages, 1 figure, to appear on Astrophysical Journal Letters (journal info added

    Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties

    Full text link
    This paper reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160^{\circ}C and 24 h. A band gap of 3.06\pm0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 minutes of irradiation of a 10 ppm dye aqueous solution and 1 g/L of TNS catalyst.Comment: 29 pages, 10 figures, accepted for publication in Journal of Materials Scienc

    Relating the thermodynamic arrow of time to the causal arrow

    Full text link
    Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born-Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonic distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning.Comment: 10 page

    Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality

    Get PDF
    A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2nanoparticles and polymer (PET), and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV) butoxide (Ti(OBu)4) forming nano-TiO2in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites

    Effect of a magnetic field on the spin- and charge-density wave order in La1.45Nd0.4Sr0.15CuO4

    Full text link
    The spin-density wave (SDW) and charge-density wave (CDW) order in superconducting La1.45Nd0.4Sr0.15CuO4 were studied under an applied magnetic field using neutron and X-ray diffraction techniques. In zero field, incommensurate (IC) SDW order appears below ~ 40 K, which is characterized by neutron diffraction peaks at (1/2 +/- 0.134, 1/2 +/- 0.134, 0). The intensity of these IC peaks increases rapidly below T_Nd ~ 8 K due to an ordering of the Nd^3+ spins. The application of a 1 T magnetic field parallel to the c-axis markedly diminishes the intensity below T_Nd, while only a slight decrease in intensity is observed at higher temperatures for fields up to 7 T. Our interpretation is that the c-axis field suppresses the parasitic Nd^3+ spin order at the incommensurate wave vector without disturbing the stripe order of Cu^2+ spins. Consistent with this picture, the CDW order, which appears below 60 K, shows no change for magnetic fields up to 4 T. These results stand in contrast to the significant field-induced enhancement of the SDW order observed in superconducting La2-xSrxCuO4 with x ~ 0.12 and stage-4 La2CuO4+y. The differences can be understood in terms of the relative volume fraction exhibiting stripe order in zero field, and the collective results are consistent with the idea that suppression of superconductivity by vortices nucleates local patches of stripe order.Comment: 7 pages, 5 figure
    • …
    corecore