96 research outputs found
Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive escherichia coli (AIEC) in immune cells
Adherent invasive Escherichia coli (AIEC) have been implicated as a causative agent of Crohn's disease (CD) due to their isolation from the intestines of CD sufferers and their ability to persist in macrophages inducing granulomas. The rapid intracellular multiplication of AIEC sets it apart from other enteric pathogens such as Salmonella Typhimurium which after limited replication induce programmed cell death (PCD). Understanding the response of infected cells to the increased AIEC bacterial load and associated metabolic stress may offer insights into AIEC pathogenesis and its association with CD. Here we show that AIEC persistence within macrophages and dendritic cells is facilitated by increased proteasomal degradation of caspase-3. In addition S-nitrosylation of pro- and active forms of caspase-3, which can inhibit the enzymes activity, is increased in AIEC infected macrophages. This S-nitrosylated caspase-3 was seen to accumulate upon inhibition of the proteasome indicating an additional role for S-nitrosylation in inducing caspase-3 degradation in a manner independent of ubiquitination. In addition to the autophagic genetic defects that are linked to CD, this delay in apoptosis mediated in AIEC infected cells through increased degradation of caspase-3, may be an essential factor in its prolonged persistence in CD patients
Transcriptional Repressor Gfi1 Integrates Cytokine-Receptor Signals Controlling B-Cell Differentiation
Hematopoietic stem cell differentiation is specified by cytokines and transcription factors, but the mechanisms controlling instructive and permissive signalling networks are poorly understood. We provide evidence that CLP1-dependent IL7-receptor mediated B cell differentiation is critically controlled by the transcriptional repressor Gfi1. Gfi1-deficient progenitor B cells show global defects in IL7Rα-dependent signal cascades. Consequently, IL7-dependent trophic, proliferative and differentiation-inducing responses of progenitor B cells are perturbed. Gfi1 directly regulates expression levels of IL7Rα and indirectly controls STAT5 signalling via expression of SOCS3. Thus, Gfi1 selectively specifies IL7-dependent development of B cells from CLP1 progenitors, providing clues to the transcriptional networks integrating cytokine signals and lymphoid differentiation
Dendritic Cell Subtypes from Lymph Nodes and Blood Show Contrasted Gene Expression Programs upon Bluetongue Virus Infection
Chantier qualité GAHuman and animal hemorrhagic viruses initially target dendritic cells (DCs). It has been proposed, but not documented, that both plasmacytoid DCs (pDCs) and conventional DCs (cDCs) may participate in the cytokine storm encountered in these infections. In order to evaluate the contribution of DCs in hemorrhagic virus pathogenesis, we performed a genome-wide expression analysis during infection by Bluetongue virus (BTV), a double-stranded RNA virus that induces hemorrhagic fever in sheep and initially infects cDCs. Both pDCs and cDCs accumulated in regional lymph nodes and spleen during BTV infection. The gene response profiles were performed at the onset of the disease and markedly differed with the DC subtypes and their lymphoid organ location. An integrative knowledge-based analysis revealed that blood pDCs displayed a gene signature related to activation of systemic inflammation and permeability of vasculature. In contrast, the gene profile of pDCs and cDCs in lymph nodes was oriented to inhibition of inflammation, whereas spleen cDCs did not show a clear functional orientation. These analyses indicate that tissue location and DC subtype affect the functional gene expression program induced by BTV and suggest the involvement of blood pDCs in the inflammation and plasma leakage/hemorrhage during BTV infection in the real natural host of the virus. These findings open the avenue to target DCs for therapeutic interventions in viral hemorrhagic diseases
Elevated frequencies of leukemic myeloid and plasmacytoid dendritic cells in acute myeloid leukemia with the FLT3 internal tandem duplication
Some 30% of acute myeloid leukemia (AML) patients display an internal tandem duplication (ITD) mutation in the FMS-like tyrosine kinase 3 (FLT3) gene. FLT3-ITDs are known to drive hematopoietic stem cells towards FLT3 ligand independent growth, but the effects on dendritic cell (DC) differentiation during leukemogenesis are not clear. We compared the frequency of cells with immunophenotype of myeloid DC (mDC: Lin−, HLA-DR+, CD11c+, CD86+) and plasmacytoid DC (pDC: Lin−, HLA-DR+, CD123+, CD86+) in diagnostic samples of 47 FLT3-ITD− and 40 FLT3-ITD+ AML patients. The majority of ITD+ AML samples showed high frequencies of mDCs or pDCs, with significantly decreased HLA-DR expression compared with DCs detectable in ITD− AML samples. Interestingly, mDCs and pDCs sorted out from ITD+ AML samples contained the ITD insert revealing their leukemic origin and, upon ex vivo culture with cytokines, they acquired DC morphology. Notably, mDC/pDCs were detectable concurrently with single lineage mDCs and pDCs in all ITD+ AML (n = 11) and ITD− AML (n = 12) samples analyzed for mixed lineage DCs (Lin−, HLA-DR+, CD11c+, CD123+). ITD+ AML mDCs/pDCs could be only partially activated with CD40L and CpG for production of IFN-α, TNF-α, and IL-1α, which may affect the anti-leukemia immune surveillance in the course of disease progression
Evidence implicating Gfi-1 and Pim-1 in pre-T-cell differentiation steps associated with beta-selection.
After rearrangement of the T-cell receptor (TCR) beta-locus, early CD4(-)/CD8(-) double negative (DN) thymic T-cells undergo a process termed 'beta-selection' that allows the preferential expansion of cells with a functional TCR beta-chain. This process leads to the formation of a rapidly cycling subset of DN cells that subsequently develop into CD4(+)/CD8(+) double positive (DP) cells. Using transgenic mice that constitutively express the zinc finger protein Gfi-1 and the serine/threonine kinase Pim-1, we found that the levels of both proteins are important for the correct development of DP cells from DN precursors at the stage where 'beta-selection' occurs. Analysis of the CD25(+)/CD44(-,lo) DN subpopulation from these animals revealed that Gfi-1 inhibits and Pim-1 promotes the development of larger beta-selected cycling cells ('L subset') from smaller resting cells ('E subset') within this subpopulation. We conclude from our data that both proteins, Pim-1 and Gfi-1, participate in the regulation of beta-selection-associated pre-T-cell differentiation in opposite directions and that the ratio of both proteins is important for pre-T-cells to pass the 'E' to 'L' transition correctly during beta-selection
CD101 surface expression discriminates potency among murine FoxP3+ regulatory T cells.
CD4+CD25+FoxP3+ regulatory T cells (Treg) have been shown to be protective in animal models of autoimmunity and acute graft-vs-host disease. However, owing to the functional heterogeneity among CD4+CD25+ T cells, surface markers expressed selectively on functionally active Treg would be useful for purposes of identifying and isolating such cells. We generated a rabbit mAb against murine CD101, a transmembrane glycoprotein involved in T cell activation. Among freshly isolated T cells, CD101 was detected on 25-30% of CD4+CD25+ Treg and approximately 20% of conventional memory T cells. CD101(high) Treg displayed greater in vitro suppression of alloantigen-driven T cell proliferation as compared with CD101(low) Treg. In a model of graft-vs-host disease induced by allogeneic bone marrow transplantation in vivo bioluminescence imaging demonstrated reduced expansion of donor-derived luciferase-labeled conventional T cells in mice treated with CD101(high) Treg, compared with CD101(low) Treg. Moreover, treatment with CD101(high) Treg resulted in improved survival, reduced proinflammatory cytokine levels and reduced end organ damage. Among the CD101(high) Treg all of the in vivo suppressor activity was contained within the CD62L(high) subpopulation. We conclude that CD101 expression distinguishes murine Treg with potent suppressor activity
- …