29 research outputs found

    The COP9 SIGNALOSOME is required for postembryonic meristem maintenance in Arabidopsis thaliana

    Get PDF
    Cullin-RING E3 ligases (CRLs) regulate different aspects of plant development, and are activated by modification of their cullin subunit with the ubiquitin-like protein NEDD8 (NEural precursor cell expressed Developmentally Down-regulated 8) (neddylation) and deactivated by NEDD8 removal (deneddylation). The CONSTITUTIVELY PHOTOMORPHOGENIC9 (COP9) signalosome (CSN) acts as a molecular switch of CRLs activity by reverting their neddylation status, but its contribution to embryonic and early seedling development remains poorly characterized. Here, we analyzed the phenotypic defects of csn mutants and monitored the cullin deneddylation/neddylation ratio during embryonic and early seedling development. We show that while csn mutants can complete embryogenesis (albeit at a slower pace than wild type) and are able to germinate (albeit at a reduced rate), they progressively loose meristem activity upon germination, until they become unable to sustain growth. We also show that the majority of cullin proteins is progressively neddylated during the late stages of seed maturation and becomes deneddylated upon seed germination. This developmentally regulated shift in the cullin neddylation status is absent in csn mutants. We conclude that the CSN and its cullin deneddylation activity are required to sustain postembryonic meristem function in Arabidopsis

    GRMA: Generalized Range Move Algorithms for the efficient optimization of MRFs

    Get PDF
    Markov Random Fields (MRF) have become an important tool for many vision applications, and the optimization of MRFs is a problem of fundamental importance. Recently, Veksler and Kumar et al. proposed the range move algorithms, which are some of the most successful optimizers. Instead of considering only two labels as in previous move-making algorithms, they explore a large search space over a range of labels in each iteration, and significantly outperform previous move-making algorithms. However, two problems have greatly limited the applicability of range move algorithms: 1) They are limited in the energy functions they can handle (i.e., only truncated convex functions); 2) They tend to be very slow compared to other move-making algorithms (e.g., �-expansion and ��-swap). In this paper, we propose two generalized range move algorithms (GRMA) for the efficient optimization of MRFs. To address the first problem, we extend the GRMAs to more general energy functions by restricting the chosen labels in each move so that the energy function is submodular on the chosen subset. Furthermore, we provide a feasible sufficient condition for choosing these subsets of labels. To address the second problem, we dynamically obtain the iterative moves by solving set cover problems. This greatly reduces the number of moves during the optimization.We also propose a fast graph construction method for the GRMAs. Experiments show that the GRMAs offer a great speedup over previous range move algorithms, while yielding competitive solutions

    Chalcogenide Glass-on-Graphene Photonics

    Get PDF
    Two-dimensional (2-D) materials are of tremendous interest to integrated photonics given their singular optical characteristics spanning light emission, modulation, saturable absorption, and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. In this paper, we present a new route for 2-D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material which can be directly deposited and patterned on a wide variety of 2-D materials and can simultaneously function as the light guiding medium, a gate dielectric, and a passivation layer for 2-D materials. Besides claiming improved fabrication yield and throughput compared to the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2-D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators

    The complete mitochondrial genome of Aconurella prolixa (Lethierry 1885) (Hemiptera: Cicadellidae: Deltocephalinae: Chiasmini)

    No full text
    The complete mitochondrial genome of the widespread leafhopper species Aconurella prolixa (Hemiptera: Cicadellidae: Deltocephalinae: Chiasmini) was obtained via next-generation sequencing. This mitochondrial genome is 14,832 bp in length with the 37 classical eukaryotic mitochondrial genes and a control region. All 13 protein-coding genes (PCGs) are initiated with ATN, except ND5 uses TTG as the start codon, and terminate with TAA or TAG with the exception of COX2 and ND4 which use a single T residue as the stop codon. Twenty-one of the 22 transfer RNA (tRNAs) genes have the typical clover-leaf structure except for trnS1. Unlike some other species of deltocephalinae, no tRNA rearrangements were detected. The monophyly of Cicadellidae and Deltocephalinae, as well as the monophyly of Chiasmini, with a sister relationship between A. prolixa and (Exitianus indicus + Nephotettix cincticeps) is supported by Bayesian inference phylogenetic analyses based on 13 PCGs

    Quantifying the Dzyaloshinskii-Moriya Interaction Induced by the Bulk Magnetic Asymmetry

    Full text link
    A broken interfacial inversion symmetry in ultrathin ferromagnet/heavy metal (FM/HM) bilayers is generally believed to be a prerequisite for accommodating the Dzyaloshinskii-Moriya interaction (DMI) and for stabilizing chiral spin textures. In these bilayers, the strength of the DMI decays as the thickness of the FM layer increases and vanishes around a few nanometers. In the present study, through synthesizing relatively thick films of compositions CoPt or FePt, CoCu or FeCu, FeGd and FeNi, contributions to DMI from the composition gradient induced bulk magnetic asymmetry (BMA) and spin-orbit coupling (SOC) are systematically examined. Using Brillouin light scattering spectroscopy, both the sign and amplitude of DMI in films with controllable direction and strength of BMA, in the presence and absence of SOC are experimentally studied. In particular, we show that a sizable amplitude of DMI (0.15 mJ/m^2) can be realized in CoPt or FePt films with BMA and strong SOC, whereas negligible DMI strengths are observed in other thick films with BMA but without significant SOC. The pivotal roles of BMA and SOC are further examined based on the three-site Fert-Levy model and first-principles calculations. It is expected that our findings may help to further understand the origin of chiral magnetism and to design novel non-collinear spin textures.Comment: Physical Review Letters, in pres
    corecore