80 research outputs found

    Predator hunting mode and host plant quality shape attack-abatement patterns of predation risk in an insect herbivore

    Get PDF
    Group formation reduces individual predation risk when the proportion of prey taken per predator encounter declines faster than the increase in group encounter rate (a ack-abatement). Despite a ack-abatement being an important component of group formation ecology, several key aspects have not been empirically studied, that is, interactions with the hunting mode of the predator and how these relationships are modi ed by local habitat quality. In 79 cage trials, we examined individual egg predation risk in di erent-sized egg clutches from the blue willow beetle Phratora vulgatissima for two predators with di erent hunting modes (consumption of full group [Orthotylus marginalis] vs. part group [Anthocoris nemorum]). Because these predators also take nutrients from plant sap, we could examine how the quality of alternative food sources (high- vs. low-quality host plant sap) in uenced a ack-abatement pa erns in the presence of di erent hunting strategies. For the O. marginalis predator, individual egg predation risk was largely independent of group size. For A. nemorum, egg predation risk clearly declined with increasing group size. However, approximately one-third of the grouping bene t was lost to an increase in group detectability. There were clear di erences in a ack-abatement pa erns between plants with high- vs. low-quality sap. When O. marginalis was the predator, there was no clear change in a ack-abatement in relation to host plant quality. However, for A. nemorum there was a clear reduction in overall predation risk and a stronger a ack-abatement pa ern with increasing group size when plant sap quality increased. This implies that the relative bene ts of prey grouping behavior for any species might show diurnal or seasonal changes as other aspects of resource/habitat quality change for the focal predator. Modulation of a ack-abatement by bo om-up e ects such as plant-based food resources is yet to be incorporated into general theory, despite the ubiquity of omnivorous predators and with omnivory being important for shaping food webs, ecosystem functions, and in biological control. Thus, ongoing re nement of a ack- abatement theory by focusing on bo om-up vs. top-down processes could have signi cant impacts on many important contemporary elds of study

    Effects of CuO additives and sol-gel technique on NiNb2O6 dielectric ceramics for LTCC application

    Get PDF
    The effects of CuO additives and sol–gel method synthesis on the sintering behavior, microstructure and the microwave dielectric properties of NiNb2O6 ceramics were investigated systematically. The NiNb2O6 ceramics were synthesized with traditional solid state method and sol–gel method, and the CuO additives were used in the solid state method for comparison. The sintering temperature of NiNb2O6 ceramics with the highest densification can be effectively reduced from about 1275 °C to 1050 and 1100 °C respectively by using CuO additions and sol–gel technique. To study their applicability in low temperature co-fired ceramic technology, dielectric properties have been characterized. The dielectric properties exhibited a significant dependence on the sintering condition, composition and crystal structure of the ceramics. In particular, the 2.5 wt% CuO-doped NiNb2O6 ceramics sintered at 1050 °C have excellent microwave dielectric properties: εr = 21.45, Q × f = 23,531 GHz, τf = −27.9 ppm/°C. While the NiNb2O6 ceramics prepared by sol–gel method obtain microwave dielectric properties as: εr = 19.16, Q × f = 11,149 GHz, τf = −27.3 ppm/°C after sintered at 1100 °C for 2 h

    Insects as Stem Engineers: Interactions Mediated by the Twig-Girdler Oncideres albomarginata chamela Enhance Arthropod Diversity

    Get PDF
    Background: Ecosystem engineering may influence community structure and biodiversity by controlling the availability of resources and/or habitats used by other organisms. Insect herbivores may act as ecosystem engineers but there is still poor understanding of the role of these insects structuring arthropod communities. Methodology/Principal Findings: We evaluated the effect of ecosystem engineering by the stem-borer Oncideres albomarginata chamela on the arthropod community of a tropical dry forest for three consecutive years. The results showed that ecosystem engineering by O. albomarginata chamela had strong positive effects on the colonization, abundance, species richness and composition of the associated arthropod community, and it occurred mainly through the creation of a habitat with high availability of oviposition sites for secondary colonizers. These effects cascade upward to higher trophic levels. Overall, ecosystem engineering by O. albomarginata chamela was responsible for nearly 95 % of the abundance of secondary colonizers and 82 % of the species richness. Conclusions/Significance: Our results suggest that ecosystem engineering by O. albomarginata chamela is a keystone process structuring an arthropod community composed by xylovores, predators and parasitoids. This study is the first to empirically demonstrate the effect of the ecosystem engineering by stem-boring insects on important attributes o

    Plant Species Loss Affects Life-History Traits of Aphids and Their Parasitoids

    Get PDF
    The consequences of plant species loss are rarely assessed in a multi-trophic context and especially effects on life-history traits of organisms at higher trophic levels have remained largely unstudied. We used a grassland biodiversity experiment and measured the effects of two components of plant diversity, plant species richness and the presence of nitrogen-fixing legumes, on several life-history traits of naturally colonizing aphids and their primary and secondary parasitoids in the field. We found that, irrespective of aphid species identity, the proportion of winged aphid morphs decreased with increasing plant species richness, which was correlated with decreasing host plant biomass. Similarly, emergence proportions of parasitoids decreased with increasing plant species richness. Both, emergence proportions and proportions of female parasitoids were lower in plots with legumes, where host plants had increased nitrogen concentrations. This effect of legume presence could indicate that aphids were better defended against parasitoids in high-nitrogen environments. Body mass of emerged individuals of the two most abundant primary parasitoid species was, however, higher in plots with legumes, suggesting that once parasitoids could overcome aphid defenses, they could profit from larger or more nutritious hosts. Our study demonstrates that cascading effects of plant species loss on higher trophic levels such as aphids, parasitoids and secondary parasitoids begin with changed life-history traits of these insects. Thus, life-history traits of organisms at higher trophic levels may be useful indicators of bottom-up effects of plant diversity on the biodiversity of consumers

    Peroxide-based route for the synthesis of zinc titanate powder

    Get PDF
    In this work the thermodynamical solubility diagrams of zinc and titanium hydroxides were reviewed in order to determine the conditions for maximum degree of phase composition homogenization of precipitates. Experimental investigation of dependency of titanium peroxohydroxide solubility on solution acidity has been carried out and coprecipitation of zinc ions has been studied. It was concluded that precipitation by constant addition of mixed salts and base solutions into the mother liquor with constant acidity of pH 8.5 allows maximizing homogenization of precipitate composition. Thermal treatment process of mixed zinc and titanium hydroxides coprecipitated with hydrogen peroxide was studied using thermogravimetric analysis, differential thermal analysis and X-ray diffraction methods. It was found that precipitates of co-precipitated mixtures of zinc and titanium hydroxides contained impurities of salts precursors of the Zn (NO3)2 and TiOCl2 at a level of 1%. The experimental data demonstrate the influence of hydrogen peroxide on crystal growth rate of the zinc titanate during thermal treatment. The temperature ranges and kinetic parameters of hydroxide mixture dehydration, decomposition of the titanium peroxohydroxide and precursor impurities were determined

    Enhanced leaf nitrogen status stabilizes omnivore population density

    Get PDF
    Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN x g(-1). We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore-prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide "background level" control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption-resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status

    Oak canopy arthropod communities: which factors shape its structure?

    Full text link
    corecore