1,096 research outputs found

    Radio wave scattering by circumgalactic cool gas clumps

    Get PDF
    We consider the effects of radio wave scattering by cool ionized clumps (T ∼ 10^4 K) in circumgalactic media (CGMs). The existence of such clumps is inferred from intervening quasar absorption systems, but has long been something of a theoretical mystery. We consider the implications for compact radio sources of the ‘fog-like’ two-phase model of the CGM recently proposed by McCourt et al. In this model, the CGM consists of a diffuse coronal gas (T ≳ 10^6 K) in pressure equilibrium with numerous ≲1 pc scale cool clumps or ‘cloudlets’ formed by shattering in a cooling instability. The areal filling factor of the cloudlets is expected to exceed unity in ≳10^(11.5) M⊙ haloes, and the ensuing radio wave scattering is akin to that caused by turbulence in the Galactic warm ionized medium. If 30 per cent of cosmic baryons are in the CGM, we show that for a cool-gas volume fraction of fv ∼ 10^(−3), sources at z_s ∼ 1 suffer angular broadening by ∼15μ as and temporal broadening by ∼1 ms at λ = 30 cm, due to scattering by the clumps in intervening CGM. The former prediction will be difficult to test (the angular broadening will suppress Galactic scintillation only for <10μ Jy compact synchrotron sources). However the latter prediction, of temporal broadening of localized fast radio bursts, can constrain the size and mass fraction of cool ionized gas clumps as a function of halo mass and redshift, and thus provides a test of the model proposed by McCourt et al

    Radio wave scattering by circumgalactic cool gas clumps

    Get PDF
    We consider the effects of radio-wave scattering by cool ionized clumps (T104T\sim 10^4\,K) in circumgalactic media (CGM). The existence of such clumps are inferred from intervening quasar absorption systems, but have long been something of a theoretical mystery. We consider the implications for compact radio sources of the `fog-like' two-phase model of the circumgalactic medium recently proposed by McCourt et al.(2018). In this model, the CGM consists of a diffuse coronal gas (T106T\gtrsim 10^6\,K) in pressure equilibrium with numerous 1\lesssim 1\,pc scale cool clumps or `cloudlets' formed by shattering in a cooling instability. The areal filling factor of the cloudlets is expected to exceed unity in 1011.5M\gtrsim 10^{11.5} M_\odot haloes, and the ensuing radio-wave scattering is akin to that caused by turbulence in the Galactic warm ionized medium (WIM). If 3030\,per-cent of cosmic baryons are in the CGM, we show that for a cool-gas volume fraction of fv103f_{\rm v}\sim 10^{-3}, sources at zs1z_{\rm s}\sim 1 suffer angular broadening by 15μ\sim 15\,\muas and temporal broadening by 1\sim 1\,ms at λ=30\lambda = 30\,cm, due to scattering by the clumps in intervening CGM. The former prediction will be difficult to test (the angular broadening will suppress Galactic scintillation only for <10μ<10\,\muJy compact synchrotron sources). However the latter prediction, of temporal broadening of localized fast radio bursts, can constrain the size and mass fraction of cool ionized gas clumps as function of halo mass and redshift, and thus provides a test of the model proposed by McCourt et al.(2018).Comment: In press MNRA

    Tidal coupling of a Schwarzschild black hole and circularly orbiting moon

    Get PDF
    We describe the possibility of using LISA's gravitational-wave observations to study, with high precision, the response of a massive central body to the tidal gravitational pull of an orbiting, compact, small-mass object. Motivated by this application, we use first-order perturbation theory to study tidal coupling for an idealized case: a massive Schwarzschild black hole, tidally perturbed by a much less massive moon in a distant, circular orbit. We investigate the details of how the tidal deformation of the hole gives rise to an induced quadrupole moment in the hole's external gravitational field at large radii. In the limit that the moon is static, we find, in Schwarzschild coordinates and Regge-Wheeler gauge, the surprising result that there is no induced quadrupole moment. We show that this conclusion is gauge dependent and that the static, induced quadrupole moment for a black hole is inherently ambiguous. For the orbiting moon and the central Schwarzschild hole, we find (in agreement with a recent result of Poisson) a time-varying induced quadrupole moment that is proportional to the time derivative of the moon's tidal field. As a partial analog of a result derived long ago by Hartle for a spinning hole and a stationary distant companion, we show that the orbiting moon's tidal field induces a tidal bulge on the hole's horizon, and that the rate of change of the horizon shape leads the perturbing tidal field at the horizon by a small angle.Comment: 14 pages, 0 figures, submitted to Phys. Rev.

    Radio wave scattering by circumgalactic cool gas clumps

    Get PDF
    We consider the effects of radio wave scattering by cool ionized clumps (T ∼ 10^4 K) in circumgalactic media (CGMs). The existence of such clumps is inferred from intervening quasar absorption systems, but has long been something of a theoretical mystery. We consider the implications for compact radio sources of the ‘fog-like’ two-phase model of the CGM recently proposed by McCourt et al. In this model, the CGM consists of a diffuse coronal gas (T ≳ 10^6 K) in pressure equilibrium with numerous ≲1 pc scale cool clumps or ‘cloudlets’ formed by shattering in a cooling instability. The areal filling factor of the cloudlets is expected to exceed unity in ≳10^(11.5) M⊙ haloes, and the ensuing radio wave scattering is akin to that caused by turbulence in the Galactic warm ionized medium. If 30 per cent of cosmic baryons are in the CGM, we show that for a cool-gas volume fraction of fv ∼ 10^(−3), sources at z_s ∼ 1 suffer angular broadening by ∼15μ as and temporal broadening by ∼1 ms at λ = 30 cm, due to scattering by the clumps in intervening CGM. The former prediction will be difficult to test (the angular broadening will suppress Galactic scintillation only for <10μ Jy compact synchrotron sources). However the latter prediction, of temporal broadening of localized fast radio bursts, can constrain the size and mass fraction of cool ionized gas clumps as a function of halo mass and redshift, and thus provides a test of the model proposed by McCourt et al

    Formation of Relativistic Outflows in Shearing Black Hole Accretion Coronae

    Full text link
    We examine the possibility that the relativistic jets observed in many active galactic nuclei may be powered by the Fermi acceleration of protons in a tenuous corona above a two-temperature accretion disk. In this picture the acceleration arises as a consequence of the shearing motion of the magnetic field in the corona, which is anchored in the underlying Keplerian disk. The protons in the corona have a power-law distribution because the density there is too low for proton-proton collisions to thermalize the energy supplied via Fermi acceleration. The same shear acceleration mechanism also operates in the disk itself, however, there the density is high enough for thermalization to occur and consequently the disk protons have a Maxwellian distribution. Particle acceleration in the corona leads to the development of a pressure-driven wind that passes through a critical point and subsequently transforms into a relativistic jet at large distances from the black hole. We combine the critical conditions for the wind with the structure equations for the disk and the corona to obtain a coupled disk/corona/wind model. Using the coupled model we compute the asymptotic Lorentz factor Γ\Gamma_\infty of the jet as a function of the cylindrical starting radius at the base of the outflow, in the corona. Our results suggest that \Gamma_\infty \lapprox 10, which is consistent with observations of superluminal motion in blazars. We show that collisions between the jet and broad-line emission clouds can produce high-energy radiation with a luminosity sufficient to power the γ\gamma-rays observed from blazars. Subject headings: radiation mechanisms: non-thermal, accretion, accretion disks, acceleration of particles, gamma rays: theoryComment: 50 pages, 13 figures, accepted by ApJ, 199

    Relativity at Action or Gamma-Ray Bursts

    Get PDF
    Gamma ray Bursts (GRBs) - short bursts of few hundred keV γ\gamma-rays - have fascinated astronomers since their accidental discovery in the sixties. GRBs were ignored by most relativists who did not expect that they are associated with any relativistic phenomenon. The recent observations of the BATSE detector on the Compton GRO satellite have revolutionized our ideas on these bursts and the picture that emerges shows that GRBs are the most relativistic objects discovered so far.Comment: 7 pages, 4th prize in this years gravity essay competition to appear in General Relativity and Gravitation. Complete PS file is available at ftp://shemesh.fiz.huji.ac.il or at http://shemesh.fiz.huji.ac.il/papers/essay96.u

    Discovery of 10 pulsars in an Arecibo drift-scan survey

    Full text link
    We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147 square degrees of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a low-mass (>0.2 Msun) companion. The long orbital period and small eccentricity (e = 0.0009) make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607 which imply that its absolute visual magnitude is > 12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection imples a cooling age of least 1 Gyr.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    Determining the Cosmic Equation of State Using Future Gravitational Wave Detectors

    Get PDF
    The expected chirp mass distribution of observed events for future gravitational wave detectors is extensively investigated in the presence of an exotic fluid component with an arbitrary equation of state, 1ωxpx/ρx<0-1 \leq \omega_x \equiv p_x/\rho_x < 0, i.e., the so-called dark energy component. The results for a flat model dominated by a dark energy are compared to those for the standard flat model dominated by cold dark matter. It is found that for a flat universe the chirp mass distribution shows a sensitive dependence on ωx\omega_x, which may provide an independent and robust constraint on the cosmic equation of state.Comment: 5 pages, four figures, aa.sty LaTex fil
    corecore