23,488 research outputs found
A high-resolution mm and cm study of the obscured LIRG NGC 4418 - A compact obscured nucleus fed by in-falling gas?
The aim of this study is to constrain the dynamics, structure and feeding of
the compact nucleous of NGC4418, and to reveal the nature of the main hidden
power source: starburst or AGN. We obtained high spatial resolution
observations of NGC4418 at 1.4 and 5 GHz with MERLIN, and at 230 and 270 GHz
with the SMA very extended configuration. We use the continuum morphology and
flux density to estimate the size of the emitting region, the star formation
rate and the dust temperature. Emission lines are used to study the kinematics
through position-velocity diagrams. Molecular emission is studied with
population diagrams and by fitting an LTE synthetic spectrum. We detect bright
1mm line emission from CO, HC3N, HNC and C34S, and 1.4 GHz absorption from HI.
The CO 2-1 emission and HI absorption can be fit by two velocity components at
2090 and 2180 km s-1. We detect vibrationally excited HC3N and HNC, with Tvib
300K. Molecular excitation is consistent with a layered temperature structure,
with three main components at 80, 160 and 300 K. For the hot component we
estimate a source size of less than 5 pc. The nuclear molecular gas surface
density of 1e4 Msun pc-2 is extremely high, and similar to that found in the
ultra-luminous infrared galaxy (ULIRG) Arp220. Our observations confirm the the
presence of a molecular and atomic in-flow, previously suggested by Herschel
observations, which is feeding the activity in the center of NGC4418. Molecular
excitation confirms the presence of a very compact, hot dusty core. If a
starburst is responsible for the observed IR flux, this has to be at least as
extreme as the one in Arp220, with an age of 3-10 Myr and a star formation rate
>10 Msun yr-1. If an AGN is present, it must be extremely Compton-thick.Comment: 18 pages, 11 figures, Accepted for publication by A&A on 10/6/201
A 3-D Multilateration: A Precision Geodetic Measurement System
A system was designed with the capability of determining 1-cm accuracy station positions in three dimensions using pulsed laser earth satellite tracking stations coupled with strictly geometric data reduction. With this high accuracy, several crucial geodetic applications become possible, including earthquake hazards assessment, precision surveying, plate tectonics, and orbital determination
Out of equilibrium quantum field dynamics of an initial thermal state after a change in the external field
The effects of the initial temperature in the out of equilibrium quantum
field dynamics in the presence of an homogeneous external field are
investigated. We consider an initial thermal state of temperature T for a
constant external field J. A subsequent sign flip of the external field, J to
-J, gives rise to an out of equilibrium nonperturbative quantum field dynamics.
The dynamics is studied here for the symmetry broken lambda(Phi^2)^2 scalar N
component field theory in the large N limit. We find a dynamical effective
potential for the expectation value that helps to understand the dynamics. The
dynamics presents two regimes defined by the presence or absence of a temporal
trapping close to the metastable equilibrium position of the potential. The two
regimes are separated by a critical value of the external field that depends on
the initial temperature. The temporal trapping is shorter for larger initial
temperatures or larger external fields. Parametric resonances and spinodal
instabilities amplify the quantum fluctuations in the field components
transverse to the external field. When there is a temporal trapping this is the
main mechanism that allows the system to escape from the metastable state for
large N. Subsequently backreaction stops the growth of the quantum fluctuations
and the system enters a quasiperiodic regime.Comment: LaTeX, 19 pages, 12 .eps figures, improved version to appear in Phys
Rev
Three-D multilateration: A precision geodetic measurement system
A technique of satellite geodesy for determining the relative three dimensional coordinates of ground stations within one centimeter over baselines of 20 to 10,000 kilometers is discussed. The system is referred to as 3-D Multilateration and has applications in earthquake hazard assessment, precision surveying, plate tectonics, and orbital mechanics. The accuracy is obtained by using pulsed lasers to obtain simultaneous slant ranges between several ground stations and a moving retroreflector with known trajectory for aiming the lasers
Coherent versus Incoherent Light Scattering from a Quantum Dot
We analyze the light scattered by a single InAs quantum dot interacting with
a resonant continuous-wave laser. High resolution spectra reveal clear
distinctions between coherent and incoherent scattering, with the laser
intensity spanning over four orders of magnitude. We find that the fraction of
coherently scattered photons can approach unity under sufficiently weak or
detuned excitation, ruling out pure dephasing as a relevant decoherence
mechanism. We show how spectral diffusion shapes spectra, correlation
functions, and phase-coherence, concealing the ideal radiatively-broadened
two-level system described by Mollow.Comment: to appear in PRB 85, 23531
Quark mean field model with density dependent couplings for finite nuclei
The quark mean field model, which describes the nucleon using the constituent
quark model, is applied to investigate the properties of finite nuclei. The
couplings of the scalar and vector mesons with quarks are made density
dependent through direct coupling to the scalar field so as to reproduce the
relativistic Brueckner-Hartree-Fock results of nuclear matter. The present
model provides satisfactory results on the properties of spherical nuclei, and
predicts an increasing size of the nucleon as well as a reduction of the
nucleon mass in the nuclear environmentComment: 8 pages, REVTeX, 8 ps figures, accepted for publication in Phys. Rev.
Using of small-scale quantum computers in cryptography with many-qubit entangled states
We propose a new cryptographic protocol. It is suggested to encode
information in ordinary binary form into many-qubit entangled states with the
help of a quantum computer. A state of qubits (realized, e.g., with photons) is
transmitted through a quantum channel to the addressee, who applies a quantum
computer tuned to realize the inverse unitary transformation decoding of the
message. Different ways of eavesdropping are considered, and an estimate of the
time needed for determining the secret unitary transformation is given. It is
shown that using even small quantum computers can serve as a basis for very
efficient cryptographic protocols. For a suggested cryptographic protocol, the
time scale on which communication can be considered secure is exponential in
the number of qubits in the entangled states and in the number of gates used to
construct the quantum network
Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot
We perform quantum interference experiments on a single self-assembled
semiconductor quantum dot. The presence or absence of a single exciton in the
dot provides a qubit that we control with femtosecond time resolution. We
combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa
algorithm. The results show the feasibility of single qubit quantum logic in a
semiconductor quantum dot using ultrafast optical control.Comment: REVTex4, 4 pages, 3 figures. Now includes more details about the
dephasing in the quantum dots. The introduction has been reworded for
clarity. Minor readability fixe
Non-equilibrium dynamics in quantum field theory at high density: the tsunami
The dynamics of a dense relativistic quantum fluid out of thermodynamic
equilibrium is studied in the framework of the Phi^4 scalar field theory in the
large N limit. The time evolution of a particle distribution in momentum space
(the tsunami) is computed. The effective mass felt by the particles in such a
high density medium equals the tree level mass plus the expectation value of
the squared field. The case of negative tree level squared mass is particularly
interesting. In such case dynamical symmetry restoration as well as dynamical
symmetry breaking can happen. Furthermore, the symmetry may stay broken with
vanishing asymptotic squared mass showing the presence of out of equilibrium
Goldstone bosons. We study these phenomena and identify the set of initial
conditions that lead to each case. We compute the equation of state which turns
to depend on the initial state. Although the system does not thermalize, the
equation of state for asymptotically broken symmetry is of radiation type. We
compute the correlation functions at equal times. The two point correlator for
late times is the sum of different terms. One stems from the initial particle
distribution. Another term accounts for the out of equilibrium Goldstone bosons
created by spinodal unstabilities when the symmetry is asymptotically
broken.Both terms are of the order of the inverse of the coupling for distances
where causal signals can connect the two points. The contribution of the out of
equilibrium Goldstones exhibits scaling behaviour in a generalized sense.Comment: LaTex, 49 pages, 15 .ps figure
Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor
A recent highlight in the study of high-Tc superconductors is the observation
of band renormalization / self-energy effects on the quasiparticles. This is
seen in the form of kinks in the quasiparticle dispersions as measured by
photoemission and interpreted as signatures of collective bosonic modes
coupling to the electrons. Here we compare for the first time the self-energies
in an optimally doped and strongly overdoped, non-superconducting single-layer
Bi-cuprate (Bi2Sr2CuO6). Besides the appearance of a strong overall weakening,
we also find that weight of the self-energy in the overdoped system shifts to
higher energies. We present evidence that this is related to a change in the
coupling to c-axis phonons due to the rapid change of the c-axis screening in
this doping range.Comment: 4 pages, 3 figure
- …