620 research outputs found
Stellar Dynamics of Extreme-Mass-Ratio Inspirals
Inspiral of compact stellar remnants into massive black holes (MBHs) is
accompanied by the emission of gravitational waves at frequencies that are
potentially detectable by space-based interferometers. Event rates computed
from statistical (Fokker-Planck, Monte-Carlo) approaches span a wide range due
to uncertaintities about the rate coefficients. Here we present results from
direct integration of the post-Newtonian N-body equations of motion descrbing
dense clusters of compact stars around Schwarzschild MBHs. These simulations
embody an essentially exact (at the post-Newtonian level) treatment of the
interplay between stellar dynamical relaxation, relativistic precession, and
gravitational-wave energy loss. The rate of capture of stars by the MBH is
found to be greatly reduced by relativistic precession, which limits the
ability of torques from the stellar potential to change orbital angular
momenta. Penetration of this "Schwarzschild barrier" does occasionally occur,
resulting in capture of stars onto orbits that gradually inspiral due to
gravitational wave emission; we discuss two mechanisms for barrier penetration
and find evidence for both in the simulations. We derive an approximate formula
for the capture rate, which predicts that captures would be strongly disfavored
from orbits with semi-major axes below a certain value; this prediction, as
well as the predicted rate, are verified in the N-body integrations. We discuss
the implications of our results for the detection of extreme-mass-ratio
inspirals from galactic nuclei with a range of physical properties.Comment: 28 pages, 16 figures. Version 2 is significantly revised to reflect
new insights into J and Q effects, to be published late
Effect of slow-release FSH on embryo recovery in dairy cows
AETE, Bath, UK, 8-9 September, 2017201
Pancreatic metabolism, blood flow, and β-cell function in obese humans.
Context:
Glucolipotoxicity is believed to induce pancreatic β-cell dysfunction in obesity. Previously, it has not been possible to study pancreatic metabolism and blood flow in humans.
Objective:
The objective of the study was to investigate whether pancreatic metabolism and blood flow are altered in obesity using positron emission tomography (PET). In the preclinical part, the method was validated in animals.
Design:
This was a cross-sectional study.
Setting:
The study was conducted in a clinical research center.
Participants:
Human studies consisted of 52 morbidly obese and 25 healthy age-matched control subjects. Validation experiments were done with rodents and pigs.
Interventions:
PET and magnetic resonance imaging studies using a glucose analog ([18F]fluoro-2-deoxy-d-glucose), a palmitate analog [14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid], and radiowater ([15O]H2O) were performed. In animals, a comparison between ex vivo and in vivo data was performed.
Main Outcome Measures:
Pancreatic glucose/fatty acid (FA) uptake, fat accumulation, and blood flow parameters of β-cell function were measured.
Results:
PET proved to be a feasible method to measure pancreatic metabolism. Compared with healthy participants, obese participants had elevated pancreatic FA uptake (P < .0001), more fat accumulation (P = .0001), lowered glucose uptake both during fasting and euglycemic hyperinsulinemia, and blunted blood flow (P < .01) in the pancreas. Blood flow, FA uptake, and fat accumulation were negatively associated with multiple markers of β-cell function.
Conclusions:
Obesity leads to changes in pancreatic energy metabolism with a substrate shift from glucose to FAs. In morbidly obese humans, impaired pancreatic blood flow may contribute to β-cell dysfunction and in the pathogenesis of type 2 diabetes.
</div
Relativistic Calculation of two-Electron one-Photon and Hypersatellite Transition Energies for Elements
Energies of two-electron one-photon transitions from initial double K-hole
states were computed using the Dirac-Fock model. The transition energies of
competing processes, the K hypersatellites, were also computed. The
results are compared to experiment and to other theoretical calculations.Comment: accepted versio
High accuracy measurement of gravitational wave back-reaction in the OJ287 black hole binary
Blazar OJ287 exhibits large thermal flares at least twice every 12 years. The times of these flares have been predicted successfully using the model of a quasi-Keplerian eccentric black hole binary where the secondary impacts the accretion disk of the primary, creating the thermal flares. New measurements of the historical light curve have been combined with the observations of the 2015 November/December flare to identify the impact record since year 1886, and to constrain the orbit of the binary. The orbital solution shows that the binary period, now 12.062 years, is decreasing at the rate of 36 days per century. This corresponds to an energy loss to gravitational waves that is 6.5 ± 4 % less than the rate predicted by the standard quadrupolar gravitational wave (GW) emission. We show that the difference is due to higher order gravitational radiation reaction terms that include the dominant order tail contributions
N-body simulations of gravitational dynamics
We describe the astrophysical and numerical basis of N-body simulations, both
of collisional stellar systems (dense star clusters and galactic centres) and
collisionless stellar dynamics (galaxies and large-scale structure). We explain
and discuss the state-of-the-art algorithms used for these quite different
regimes, attempt to give a fair critique, and point out possible directions of
future improvement and development. We briefly touch upon the history of N-body
simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu
- …