2,331 research outputs found
Efficient photon counting and single-photon generation using resonant nonlinear optics
The behavior of an atomic double lambda system in the presence of a strong
off-resonant classical field and a few-photon resonant quantum field is
examined. It is shown that the system possesses properties that allow a
single-photon state to be distilled from a multi-photon input wave packet. In
addition, the system is also capable of functioning as an efficient
photodetector discriminating between one- and two-photon wave packets with
arbitrarily high efficiency.Comment: 4 pages, 2 figure
A proposal to determine properties of the gravitropic response of plants in the absence of a complicating g-force (GTHRES)
Gravitropic responses of oat seedlings (Avena sativa L.) were measured on Earth and in microgravity (IML-1). The seedlings were grown at 1 g either on Earth or on 1 g centrifuges. They were challenged by centripetal accelerations for which the intensity and duration of the stimulations were varied. All stimulation intensities were in the hypogravity region from 0.1 to 1.0 g. All responses occurred either in Spacelab microgravity or during clinorotation on Earth. The experiments were carried out with the same apparatus in Spacelab and on Earth. The experiments addressed a series of scientific questions and useful data were obtained to provide answers to some but not all of those questions
Comparative investigation of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br and Cu4Te5O12Cl4
We present a comparative study of the coupled-tetrahedra quantum spin systems
Cu2Te2O5X2, X=Cl, Br (Cu-2252(X)) and the newly synthesized Cu4Te5O12Cl4
(Cu-45124(Cl)) based on ab initio Density Functional Theory calculations. The
magnetic behavior of Cu-45124(Cl) with a phase transition to an ordered state
at a lower critical temperature T=13.6K than in Cu-2252(Cl) (T=18K) can
be well understood in terms of the modified interaction paths. We identify the
relevant structural changes between the two systems and discuss the
hypothetical behavior of the not yet synthesized Cu-45124(Br) with an ab initio
relaxed structure using Car-Parrinello Molecular Dynamics.Comment: 2 pages, 1 figure; submitted to Proceedings of M2S-HTSC VIII, Dresden
200
Attosecond Control of Ionization Dynamics
Attosecond pulses can be used to initiate and control electron dynamics on a
sub-femtosecond time scale. The first step in this process occurs when an atom
absorbs an ultraviolet photon leading to the formation of an attosecond
electron wave packet (EWP). Until now, attosecond pulses have been used to
create free EWPs in the continuum, where they quickly disperse. In this paper
we use a train of attosecond pulses, synchronized to an infrared (IR) laser
field, to create a series of EWPs that are below the ionization threshold in
helium. We show that the ionization probability then becomes a function of the
delay between the IR and attosecond fields. Calculations that reproduce the
experimental results demonstrate that this ionization control results from
interference between transiently bound EWPs created by different pulses in the
train. In this way, we are able to observe, for the first time, wave packet
interference in a strongly driven atomic system.Comment: 8 pages, 4 figure
Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al-Mg alloys
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ElsevierThe mechanisms involved in the grain refinement of Al–Mg alloys through varying the Mg content and applying intensive melt shearing were investigated. It was found that the oxide formed in Al–Mg alloys under normal melting conditions is MgAl2O4, which displays an equiaxed and faceted morphology with {1 1 1} planes exposed as its natural surfaces. Depending on the Mg content, MgAl2O4 particles exist either as oxide films in dilute Al–Mg alloys (Mg 1 wt.%). Such MgAl2O4 particles can act as potent sites for nucleation of α-Al grains, which is evidenced by the well-defined cube-on-cube orientation relationship between MgAl2O4 and α-Al. Enhanced heterogeneous nucleation in Al–Mg alloys can be attributed to the high potency of MgAl2O4 particles with a lattice misfit of 1.4% and the increased number density of MgAl2O4 particles due to either natural dispersion by the increased Mg content or forced dispersion through intensive melt shearing. It was also found that intensive melt shearing leads to significant grain refinement of dilute Al–Mg alloys by effective dispersion of the MgAl2O4 particles entrapped in oxide films, but it has marginal effect on the grain refinement of concentrated Al–Mg alloys, where MgAl2O4 particles have been naturally dispersed into individual particles by the increased Mg content.This study is funded from the EPSRC Grant EP/H026177/1
Squeezing and entanglement delay using slow light
We examine the interaction of a weak probe with atoms in a lambda-level
configuration under the conditions of electromagnetically induced transparency
(EIT). In contrast to previous works on EIT, we calculate the output state of
the resultant slowly propagating light field while taking into account the
effects of ground state dephasing and atomic noise for a more realistic model.
In particular, we propose two experiments using slow light with a nonclassical
probe field and show that two properties of the probe, entanglement and
squeezing, characterizing the quantum state of the probe field, can be
well-preserved throughout the passage.Comment: 2 figures; v2: fixed some minor typographical errors in a couple of
equations and corrected author spelling in one reference. v3: Added three
authors; changed the entaglement definition to conform to a more accepted
standard (Duan's entanglement measure); altered the abstract slightly. v4:
fixed formatting of figure
Two-photon double ionization of neon using an intense attosecond pulse train
We present the first demonstration of two-photon double ionization of neon
using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a
photon energy regime where both direct and sequential mechanisms are allowed.
For an APT generated through high-order harmonic generation (HHG) in argon we
achieve a total pulse energy close to 1 J, a central energy of 35 eV and a
total bandwidth of eV. The APT is focused by broadband optics in a
neon gas target to an intensity of Wcm. By tuning
the photon energy across the threshold for the sequential process the double
ionization signal can be turned on and off, indicating that the two-photon
double ionization predominantly occurs through a sequential process. The
demonstrated performance opens up possibilities for future XUV-XUV pump-probe
experiments with attosecond temporal resolution in a photon energy range where
it is possible to unravel the dynamics behind direct vs. sequential double
ionization and the associated electron correlation effects
Small-scale lobes on Mars: Solifluction, thaw and clues to gully formation
The existence of solifluction lobe-like
landforms on Mars may, potentially, have important
implications for our understanding of the distribution
of thaw liquids and its geomorphic effects in recent
climate history. In this study we made an inventory
of all HiRISE images between 40°S-80°S acquired
between 2007 and 2013 and show their distribution
and their close spatio-temporal relationship to other
ice-related landforms such as gullies and polygons.
Based on Earth-analog studies and landscape analysis
we conclude that a hypothesis of freeze/thaw may
better explain their origin then current ”dry” models
Erratum : Squeezing and entanglement delay using slow light
An inconsistency was found in the equations used to calculate the variance of
the quadrature fluctuations of a field propagating through a medium
demonstrating electromagnetically induced transparency (EIT). The decoherence
term used in our original paper introduces inconsistency under weak probe
approximation. In this erratum we give the Bloch equations with the correct
dephasing terms. The conclusions of the original paper remain the same. Both
entanglement and squeezing can be delayed and preserved using EIT without
adding noise when the decoherence rate is small.Comment: 1 page, no figur
Reconstruction of 2D Al Ti on TiB in an aluminium melt
It has been widely considered that Al Ti is involved in the aluminium nucleation on TiB , although the mechanism has not been fully understood. In this paper molecular dynamics has been conducted to investigate this phenomenon at an atomistic scale. It was found that a two-dimensional Al Ti layer may remain on TiB above the aluminium liquidus. In addition, the results showed that this 2D Al Ti undergoes interface reconstruction by forming a triangular pattern. This triangular pattern consists of different alternative stacking sequences. The transition region between the triangles forms an area of strain concentration. By means of this mechanism, this interfacial Al Ti layer stabilizes itself by localizing the large misfit strain between TiB and Al Ti This reconstruction is similar to the hdp-fcc interface reconstruction in other systems which has been observed experimentally.EPSR
- …