1,063 research outputs found

    Initial stage of the 2D-3D transition of a strained SiGe layer on a pit-patterned Si(001) template

    Full text link
    We investigate the initial stage of the 2D-3D transition of strained Ge layers deposited on pit-patterned Si(001) templates. Within the pits, which assume the shape of inverted, truncated pyramids after optimized growth of a Si buffer layer, the Ge wetting layer develops a complex morphology consisting exclusively of {105} and (001) facets. These results are attributed to a strain-driven step-meandering instability on the facetted side-walls of the pits, and a step-bunching instability at the sharp concave intersections of these facets. Although both instabilities are strain-driven, their coexistence becomes mainly possible by the geometrical restrictions in the pits. It is shown that the morphological transformation of the pit surface into low-energy facets has strong influence on the preferential nucleation of Ge islands at the flat bottom of the pits.Comment: 19 pages, 7 figure

    Kjemisk og biologisk karakterisering av avløpsstrømmer fra Skjelbreia Vannverk

    Get PDF
    Årsliste 2003Skjelbreia Vannverk i Vestre Toten kommune er et av landets største membranfilteranlegg med en kapasitet på 600 m³/h. I tillegg til memranfiltreringen føres vannet gjennom marmorfiltre for alkalisering. Fylkesmannen i Oppland har gitt tillatelse for utslipp av avløpsvann fra vannverket til Hunnselva. Arbeidet som rapporteres her, er en del av de undersøkelsene som skal gjennomføres for å tilfredstille kravene i utslippstillatelsen. Det er blitt tatt prøver av vann fra den daglige rutinevasken, av vann fra den årlige hovedvasken, og av spylevannet fra marmorfiltrene. De ulike avløpsstrømmene er karakterisert kjemisk og biologisk, og det er gjort vurderinger med tanke på hvordan utslippene kan påvirke vannkvaliteten i Hunnselva. Konsentrasjonsøkninger i Hunnselva er beregnet ved minstevannføring (1 m³/s), d.v.s. i en "verste fall" situasjon.Vestre Toten kommun

    Screening Breakdown on the Route toward the Metal-Insulator Transition in Modulation Doped Si/SiGe Quantum Wells

    Full text link
    Exploiting the spin resonance of two-dimensional (2D) electrons in SiGe/Si quantum wells we determine the carrier-density-dependence of the magnetic susceptibility. Assuming weak interaction we evaluate the density of states at the Fermi level D(E_F), and the screening wave vector, q_TF. Both are constant at higher carrier densities n, as for an ideal 2D carrier gas. For n < 3e11 cm-2, they decrease and extrapolate to zero at n = 7e10 cm-2. Calculating the mobility from q_TF yields good agreement with experimental values justifying the approach. The decrease in D(E_F) is explained by potential fluctuations which lead to tail states that make screening less efficient and - in a positive feedback - cause an increase of the potential fluctuations. Even in our high mobility samples the fluctuations exceed the electron-electron interaction leading to the formation of puddles of mobile carriers with at least 1 micrometer diameter.Comment: 4 pages, 3 figure

    Efficient room-temperature light-emitters based on partly amorphised Ge quantum dots in crystalline Si

    Full text link
    Semiconductor light emitters compatible with standard Si integration technology (SIT) are of particular interest for overcoming limitations in the operating speed of microelectronic devices 1-3. Light sources based on group-IV elements would be SIT compatible but suffer from the poor optoelectronic properties of bulk Si and Ge. Here, we demonstrate that epitaxially grown Ge quantum dots (QDs) in a fully coherent Si matrix show extraordinary optical properties if partially amorphised by Ge-ion bombardment (GIB). The GIB-QDs exhibit a quasi-direct-band gap and show, in contrast to conventional SiGe nanostructures, almost no thermal quenching of the photoluminescence (PL) up to room-temperature (RT). Microdisk resonators with embedded GIB-QDs exhibit threshold-behaviour and super-linear increase of the integrated PL-intensity (IPL) with increasing excitation power Pexc which indicates light amplification by stimulated emission in a fully SIT-compatible group-IV nano-system

    The Society for Microelectronics -Annual Report 2003 Spin Relaxation in Si Quantum Wells Suppressed by an Applied Magnetic Field

    Get PDF
    We investigate spin properties of the two-dimensional electron gas in Si quantum wells defined by SiGe barriers. We find, in contrast to predictions of the classical model of D&apos;yakonov-Perel, a strong anisotropy of spin relaxation and a decrease of the spin relaxation rate with increasing electron mobility. We show that for high electron mobility the cyclotron motion causes an additional modulation of spin-orbit coupling which leads to an effective suppression of spin relaxation rate. In spintronics, the aim is to make use of the spin degrees of freedom in addition to the electronic ones. Therefore, spintronic devices based on spins of carriers in semiconductors appear particularly promising. In such elements carriers can be easily moved by applying external voltages, the well known tool of classical electronics. The utilization of spin properties, however, usually is limited by the fast spin relaxation of conduction electrons. Therefore analysis of the spin relaxation mechanisms and the search for a suitable material and optimum conditions are of primary interest in this field. In III-V compounds the spin relaxation time is below one nanosecond [1]. Silicon based devices, due to much weaker spin-orbit coupling, appear much more promising. 2D Si layers in Si/SiGe structures exhibit a spin relaxation time of the order of a few microseconds by measurements of electron spin resonance (ESR) [2] - The effect of BR coupling on spin, σ, of a conduction electron can be described by an effective magnetic field, B BR . This field is oriented in-plane and perpendicular to electron momentum, ħk. The resulting zero field splitting is given by: The direction of the BR field depends on the direction of electron k-vector, and therefore the spread of k-vectors results in a spread of the BR field. Consequently, the ESR resonance is shifted and broadened. Momentum scattering, described by a rate 1/τ k , causes a modulation of the BR field in time which leads to the so called D&apos;yakonovPerel (DP) spin relaxatio

    Tin telluride: a weakly co-elastic metal

    Full text link
    We report resonant ultrasound spectroscopy (RUS), dilatometry/magnetostriction, magnetotransport, magnetization, specific heat, and 119^{119}Sn M\"ossbauer spectroscopy measurements on SnTe and Sn0.995_{0.995}Cr0.005_{0.005}Te. Hall measurements at T=77T=77 K indicate that our Bridgman-grown single crystals have a pp-type carrier concentration of 3.4×10193.4 \times 10^{19} cm−3^{-3} and that our Cr-doped crystals have an nn-type concentration of 5.8×10225.8 \times 10^{22} cm−3^{-3}. Although our SnTe crystals are diamagnetic over the temperature range 2 K≤T≤1100 K2\, \text{K} \leq T \leq 1100\, \text{K}, the Cr-doped crystals are room temperature ferromagnets with a Curie temperature of 294 K. For each sample type, three-terminal capacitive dilatometry measurements detect a subtle 0.5 micron distortion at Tc≈85T_c \approx 85 K. Whereas our RUS measurements on SnTe show elastic hardening near the structural transition, pointing to co-elastic behavior, similar measurements on Sn0.995_{0.995}Cr0.005_{0.005}Te show a pronounced softening, pointing to ferroelastic behavior. Effective Debye temperature, θD\theta_D, values of SnTe obtained from 119^{119}Sn M\"ossbauer studies show a hardening of phonons in the range 60--115K (θD\theta_D = 162K) as compared with the 100--300K range (θD\theta_D = 150K). In addition, a precursor softening extending over approximately 100 K anticipates this collapse at the critical temperature, and quantitative analysis over three decades of its reduced modulus finds ΔC44/C44=A∣(T−T0)/T0∣−κ\Delta C_{44}/C_{44}=A|(T-T_0)/T_0|^{-\kappa} with κ=0.50±0.02\kappa = 0.50 \pm 0.02 , a value indicating a three-dimensional softening of phonon branches at a temperature T0∼75T_0 \sim 75 K, considerably below TcT_c. We suggest that the differences in these two types of elastic behaviors lie in the absence of elastic domain wall motion in the one case and their nucleation in the other

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Cathodoluminescence characterization of Ge-doped CdTe crystals

    Get PDF
    Cathodoluminescence (CL) microscopic techniques have been used to study the spatial distribution of structural defects and the deep levels in CdTe:Ge bulk crystals. The effect of Ge doping with concentrations of 10(17) and 10(19) cm(-3) on the compensation of V-Cd in CdTe has been investigated. Dependence of the intensity distribution of CL emission bands on the dopant concentration has been studied. Ge doping causes a substantial reduction of the generally referred to 1.40 eV luminescence, which is often present in undoped CdTe crystals, and enhances the 0.91 and 0.81 eV emissions
    • …
    corecore